Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mikrochim Acta ; 191(5): 277, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647714

RESUMEN

Widely used organophosphorus pesticide triazophos (TAP) can easily cumulate in aquatic system due to its high stability chemically and photochemically and thus posing significant threat to aquatic creatures and humans' health. Urging demand for rapid determining TAP in water has risen. Photoelectrochemical (PEC) sensing turns out to be a good candidate for its simplicity in fabrication and swiftness in detection. Nevertheless, traditional PEC sensors often lack selectivity as their signal generation primarily relies on the oxidation of organic compounds in the electrolyte by photo-induced holes. To address this limitation, molecularly imprinted polymers (MIPs) can be in combined with PEC sensors to significantly enhance the selectivity. Here, we present a novel approach utilizing a PEC sensor enhanced by carbon-modified titanium dioxide molecularly imprinted polymers (MIP/C/TiO2 NTs). Carbon quantum dot (CQD) modification of titanium dioxide nanotube arrays (C/TiO2 NTs) was achieved through a one-step anodization process, effectively enhancing visible light absorption by narrowing the band gap of TiO2, and CQDs also function as sensitizer accelerating charge transfer for improved and stable photocurrent signals during detection. Our method further incorporates MIPs to heighten the selectivity of the PEC sensor. Electro-polymerization using cyclic voltammetry was employed to polymerize MIPs with pyrrole as the functional monomer and triazophos as the target molecule. The resultant MIP/C/TiO2 NT sensor exhibited remarkable sensitivity, with a detection limit of 0.03 nM (S/N = 3), alongside exceptional selectivity and stability for triazophos detection in water. This offers a promising avenue for efficient, cost-effective, and rapid monitoring of pesticide contaminants in aquatic environments, contributing to the broader goals of environmental preservation and public health.

2.
Chemistry ; 29(19): e202203787, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36585826

RESUMEN

Zinc-air batteries (ZABs) have been considered as one of the most promising energy storage devices to solve the problem of energy crisis and environmental pollution. In this work, we reported the synthesis of nitrogen-doped MnO2 (N-MnO2 ) to replace the noble metal electrocatalysts for air cathode in ZABs. The doped N atoms here introduced more Mn3+ and oxygen vacancies for MnO2 , enhancing charge transfer property and accelerating surface intermediate product during the oxygen reduction reaction (ORR). Hence, the best N-MnO2 achieved remarkable electrocatalytic activities towards ORR (half-wave potential of 0.797 V vs. RHE), and reversible oxygen overpotential of around 0.842 V, which is better than or comparable to the Pt/C and Mn-based catalysts reported recently. Moreover, the homemade ZABs based on N-MnO2 showed the maximum power density of 132.8 mW cm-2 and excellent cyclic stability.

3.
Mikrochim Acta ; 190(6): 244, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37247003

RESUMEN

A photoelectrochemical molecular imprinting sensor based on Au/TiO2 nanocomposite was constructed for the detection of dibutyl phthalate. Firstly, TiO2 nanorods were grown on fluorine-doped tin oxide substrate by hydrothermal method. Then, gold nanoparticles were electrodeposited on TiO2 to fabricate Au/TiO2. Finally, molecular imprinted polymer was electropolymerized on the Au/TiO2 surface to construct MIP/Au/TiO2 PEC sensor for DBP. The conjugation effect of MIP accelerates the electron transfer between TiO2 and MIP, which can greatly improve the photoelectric conversion efficiency and sensitivity of the sensor. In addition, MIP can also provide sites for highly selective recognition of dibutyl phthalate molecules. Under optimal experimental conditions, the prepared photoelectrochemical sensor was used for the quantitative determination of DBP and the results showed a wide linear range (50 to 500 nM), a low limit of detection (0.698 nM), and good selectivity. The sensor was used in a study of real water samples to show that it has promising applications in environmental analysis.

4.
Mikrochim Acta ; 189(12): 453, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36411347

RESUMEN

A photoelectrochemical (PEC) aptasensor based on CdSe@SnS2 nanocomposite has been developed to detect sulfamethazine (SMZ). The introduction of CdSe into SnS2 displayed an amplified PEC signal, which was higher than that of pure CdSe and SnS2, attributable to its enhanced light harvesting capacity and promoted PEC energy conversion efficiency. Due to the formation of specific non-covalent bonds, the SMZ-binding aptamer (SBA) has significant specificity and sensitivity. When SMZ was incubated on a CdSe@SnS2 modified electrode fixed with aminated SBA, the formation of the SMZ/SBA complex increased the space resistance of electron transfer and hindered the electronic migration between the electrodes, resulting in a decrease in photocurrent. The greater the adsorbed amount on the SBA, the lower the photocurrent produced.  Under optimized conditions the photocurrent response of MCH/SBA/CdSe@SnS2/FTO was inversely proportional to the SMZ concentration in the range 0.1 to 100 pM, with a detection limit (3 S/N) of 0.025 pM (at 0 V vs. Hg/HgCl). The recoveries ranged from 95.8 to 104% with relative standard deviations (RSDs) < 6.3% (n = 3) in actual water sample. This PEC aptasensor which shows considerable potential in SMZ detection applications has high selectivity, reproducibility, and good stability.


Asunto(s)
Técnicas Biosensibles , Compuestos de Cadmio , Nanocompuestos , Compuestos de Selenio , Sulfametazina , Compuestos de Cadmio/química , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Reproducibilidad de los Resultados , Titanio/química , Compuestos de Selenio/química , Nanocompuestos/química
5.
Org Biomol Chem ; 17(4): 892-897, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30629064

RESUMEN

At the density functional theory (DFT) level, addition reactions between the guanine-8-yl radical and its 3'/5' neighboring purine deoxynucleosides forming the purine-purine type intrastrand cross-links were studied. It is found that addition of the guanine-8-yl radical to the C8 site of its 5' neighboring deoxyguanosine or deoxyadenosine is a two-step reaction consisting of a structurally relatively unfavourable conformational transformation step, while the corresponding 3' C8 addition is straightforward and kinetically more efficient. The 3' C8 preference of the guanine-8-yl radical additions indicates the existence of an obvious sequence effect, which is completely opposite to that observed in the formation of pyrimidine radicals induced DNA intrastrand cross-links. The detrimental effects from steric hindrance and stabilizing weak interactions make these addition reactions markedly suppressed in double stranded DNA. This work broadens our knowledge about the possible types of DNA intrastrand cross-links.

6.
Ecotoxicol Environ Saf ; 161: 715-720, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29940512

RESUMEN

Amblyseius cucumeris (Oudemans) is a beneficial non-target arthropod (NTA) and a key predator of tetranychid mites in integrated pest management (IPM) programs across China. Evaluating the toxic effects of insecticides on such predatory mites is essential for the success and development of IPM. We tested six insecticides to determine the risk of neonicotinoid insecticide toxicity to predatory mites, using the 'open glass plate method' and adult female A. cucumeris in a "worst case laboratory exposure" scenario. A 48-h toxicity test was performed using the hazard quotient (HQ) approach to evaluate the risk of each insecticide. The LR50 values (application rate that caused 50% mortality) of acetamiprid, thiamethoxam, imidacloprid, and dinotefuran were 76.4, 104.5, 84.9, and 224.6 g active ingredient (a.i.) ha-1, respectively, with in-field HQ values of 0.40, 1.28, 0.49, and 0.82, respectively. The HQ values were lower than the trigger value of 2, and were consistent with off-field values. The risks of the four neonicotinoid insecticides to adult female A. cucumeris were acceptable in two exposure scenarios in field and off field. The 48-h LR50 values for bifenthrin and malathion were 0.008 and 0.062 g. a.i. ha-1, respectively, which were much lower than the recommended field application rates. The HQ values were much higher than the trigger values for both in- and off-field, indicating that the risks of these two insecticides were unacceptable. Bifenthrin and malathion posed an extremely high risk to the test species, and their use should be restricted to reduce risks to the field with augmentative releases of A. cucumeris.


Asunto(s)
Insecticidas/toxicidad , Ácaros/efectos de los fármacos , Animales , Femenino , Guanidinas/toxicidad , Malatión/toxicidad , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Control de Plagas , Piretrinas/toxicidad , Tiametoxam/toxicidad
7.
Mikrochim Acta ; 186(1): 21, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30554349

RESUMEN

The authors describe a simplified chemical precipitation method and silver mirror reaction to synthesize a nanocomposite consiting of silver nanoparticles on a thin and porous nickel oxide film. Placed on a glassy carbon electrode (GCE), it allows for the determination of levofloxacin (LEV) via square wave voltammetry (SWV). Under optimal detection conditions, the voltammetric signal (typically measured at around 0.96 V vs. SCE) increases linearly in the 0.25-100 µM LEV concentration range. And the detection limit was calculated as 27 nM (at S/N = 3). The sensor is highly selective, stable and repeatable. It was applied to the determination of LEV in spiked human serum samples, and the satisfactory results confirm the applicability of this sensor to practical analyses. Graphical abstract Schematic of a two-step method to synthesize a nanocomposite consisting of nickel oxide porous thin-film supported silver nanoparticles. The composite was used for improved voltammetric determination of levofloxacin.


Asunto(s)
Antibacterianos/sangre , Técnicas Electroquímicas/métodos , Levofloxacino/sangre , Nanopartículas del Metal/química , Níquel/química , Plata/química , Técnicas Biosensibles/métodos , Electrodos , Humanos , Concentración de Iones de Hidrógeno , Límite de Detección , Nanocompuestos/química , Porosidad
8.
Phys Chem Chem Phys ; 19(42): 28907-28916, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29057416

RESUMEN

Pyrimidine-type radicals have been demonstrated to be able to attack their 3' or 5' neighboring purine nucleotides forming diverse DNA intrastrand cross-links, but whether or not these radicals can attack their surrounding pyrimidine nucleotides forming pyrimidine-pyrimidine type DNA intrastrand cross-links remains unclear. To resolve this question, probable additions of the uracil-5-methyl (˙UCH2) radical to the C5[double bond, length as m-dash]C6 double bond of its 3'/5' neighboring pyrimidine nucleotides in the four models, 5'-T(˙UCH2)-3', 5'-C(˙UCH2)-3', 5'-(˙UCH2)T-3', and 5'-(˙UCH2)C-3', are explored in the present work employing density functional theory (DFT) methods. The C6 site of its 5' neighboring thymidine is the preferred target for ˙UCH2 radical addition, while additions of the ˙UCH2 radical to the C6 and C5 sites of its 5' neighboring deoxycytidine are found to be competitive reactions. The ˙UCH2 radical can react with both the C6 and C5 sites of its 3' neighboring pyrimidine nucleotides, but the efficiencies of these reactions are predicted to be much lower than those of the corresponding addition reactions to its 5' neighboring pyrimidine nucleotides, indicating the existence of an obvious sequence effect. All the addition products could be finally transformed into closed-shell intrastrand cross-links, the molecular masses of which are found to be exactly the same as certain MS values determined in a recent study of an X-irradiated deoxygenated aqueous solution of calf thymus DNA. The present study thus not only definitely corroborates the fact that the reactive ˙UCH2 radical can attack its 3'/5' neighboring pyrimidine nucleotides forming several pyrimidine-pyrimidine type DNA intrastrand cross-links, but also provides a plausible explanation for the identities of these structurally unknown intrastrand cross-links.


Asunto(s)
Daño del ADN , ADN/química , Pirimidinas/química , Animales , Bovinos , Uracilo
9.
Phys Chem Chem Phys ; 19(25): 16621-16628, 2017 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-28617503

RESUMEN

Currently, all known DNA intrastrand cross-links are found to be induced by pyrimidine-type radicals; however, whether or not purine-type radicals are able to cause DNA intrastrand cross-links remains unclear. In the present study, probable additions of the highly reactive deoxyguanosine-8-yl radical to its 3'/5' neighboring pyrimidine nucleotides in four model compounds, 5'-G˙T-3', 5'-TG˙-3', 5'-G˙C-3', and 5'-CG˙-3', were studied using density functional theory (DFT) methods. In single-stranded DNA, the deoxyguanosine-8-yl radical is preferred to efficiently attack the C5 site of its 3' neighboring deoxythymidine or deoxycytidine, forming the G[8-5]T or G[8-5]C intrastrand cross-link rather than the C6 site forming the G[8-6]T or G[8-6]C intrastrand cross-link. The four corresponding sequence isomers, namely T[5-8]G, T[6-8]G, C[5-8]G, and C[6-8]G, formed by additions of deoxyguanosine-8-yl radical to its 5' neighboring pyrimidine nucleotides are predicted to be formed inefficiently. In double-stranded DNA, considering the detrimental effects of stabilizing weak interactions on related structural adjustments required in each addition reaction path, relatively lower reaction yields are suggested for the G[8-5]T and G[8-5]C intrastrand cross-links, while the formation of the other six intrastrand cross-links becomes quite difficult. All calculations definitely demonstrate that, in addition to pyrimidine-type radicals, the purine-type deoxyguanosine-8-yl radical is able to attack its 3'/5' neighboring pyrimidine nucleotides forming several DNA intrastrand cross-links.


Asunto(s)
Aductos de ADN/química , ADN/química , Desoxiguanosina/química , Radicales Libres/química , Modelos Moleculares , Conformación Molecular , Purinas/química , Teoría Cuántica
10.
Chemphyschem ; 17(11): 1669-77, 2016 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-26910801

RESUMEN

The role of adenine (A) derivatives in DNA damage is scarcely studied due to the low electron affinity of base A. Experimental studies demonstrate that low-energy electron (LEE) attachment to adenine derivatives complexed with amino acids induces barrier-free proton transfer producing the neutral N7 -hydrogenated adenine radicals rather than conventional anionic species. To explore possible DNA lesions at the A sites under physiological conditions, probable bond ruptures in two models-N7 -hydrogenated 2'-deoxyadenosine-3'-monophosphate (3'-dA(N7H)MPH) and 2'-deoxyadenosine-5'-monophosphate (5'-dA(N7H)MPH), without and with LEE attachment-are studied by DFT. In the neutral cases, DNA backbone breakage and base release resulting from C3' -O3' and N9 -C1' bond ruptures, respectively, by an intramolecular hydrogen-transfer mechanism are impossible due to the ultrahigh activation energies. On LEE attachment, the respective C3' -O3' and N9 -C1' bond ruptures in [3'-dA(N7H)MPH](-) and [5'-dA(N7H)MPH](-) anions via a pathway of intramolecular proton transfer (PT) from the C2' site of 2'-deoxyribose to the C8 atom of the base moiety become effective, and this indicates that substantial DNA backbone breaks and base release can occur at non-3'-end A sites and the 3'-end A site of a single-stranded DNA in the physiological environment, respectively. In particular, compared to the results of previous theoretical studies, not only are the electron affinities of 3'-dA(N7H)MPH and 5'-dA(N7H)MPH comparable to those of hydrogenated pyrimidine derivatives, but also the lowest energy requirements for the C3' -O3' and N9 -glycosidic bond ruptures in [3'-dA(N7H)MPH](-) and [5'-dA(N7H)MPH](-) anions, respectively, are comparable to those for the C3' -O3' and N1 -glycosidic bond cleavages in corresponding anionic hydrogenated pyrimidine derivatives. Thus, it can be concluded that the role of adenine derivatives in single-stranded DNA damage is equally important to that of pyrimidine derivatives in an irradiated cellular environment.


Asunto(s)
Adenina/química , ADN/química , Electrones , Pirimidinas/química , Adenina/análogos & derivados , Daño del ADN , Teoría Cuántica
11.
Chemphyschem ; 16(2): 436-46, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25430869

RESUMEN

Density functional theory calculations suggest that ß-turn peptide segments can act as a novel dual-relay elements to facilitate long-range charge hopping transport in proteins, with the N terminus relaying electron hopping transfer and the C terminus relaying hole hopping migration. The electron- or hole-binding ability of such a ß-turn is subject to the conformations of oligopeptides and lengths of its linking strands. On the one hand, strand extension at the C-terminal end of a ß-turn considerably enhances the electron-binding of the ß-turn N terminus, due to its unique electropositivity in the macro-dipole, but does not enhance hole-forming of the ß-turn C terminus because of competition from other sites within the ß-strand. On the other hand, strand extension at the N terminal end of the ß-turn greatly enhances hole-binding of the ß-turn C terminus, due to its distinct electronegativity in the macro-dipole, but does not considerably enhance electron-binding ability of the N terminus because of the shared responsibility of other sites in the ß-strand. Thus, in the ß-hairpin structures, electron- or hole-binding abilities of both termini of the ß-turn motif degenerate compared with those of the two hook structures, due to the decreased macro-dipole polarity caused by the extending the two terminal strands. In general, the high polarity of a macro-dipole always plays a principal role in determining charge-relay properties through modifying the components and energies of the highest occupied and lowest unoccupied molecular orbitals of the ß-turn motif, whereas local dipoles with low polarity only play a cooperative assisting role. Further exploration is needed to identify other factors that influence relay properties in these protein motifs.


Asunto(s)
Oligopéptidos/química , Proteínas/química , Electrones , Modelos Moleculares , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Teoría Cuántica
12.
Phys Chem Chem Phys ; 17(40): 26854-63, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26399512

RESUMEN

Studies on the structure, states, and reactivity of excess electrons (EEs) in biological media are of great significance. Although there is information about EE interaction with desolvated biological molecules, solution effects are hardly explored. In this work, we present an ab initio molecular dynamics simulation study on the interaction and reactivity of an EE with glycine in solution. Our simulations reveal two striking results. Firstly, a pre-solvated EE partially localizes on the negatively charged -COO(-) group of the zwitterionic glycine and the remaining part delocalizes over solvent water molecules, forming an anion-centered quasi-localized structure, due to relative alignment of the lowest unoccupied molecular orbital energy levels of potential sites for EE residence in the aqueous solution. Secondly, after a period of anion-centered localization of an EE, the zwitterionic glycine is induced to spontaneously fragment through the cleavage of the N-Cα bond, losing ammonia (deamination), and leaving a ˙CH2-COO(-) anion radical, in good agreement with experimental observations. Introduction of the same groups (-COO(-) or -NH3(+)) in the side chain (taking lysine and aspartic acid as examples) can affect EE localization, with the fragmentation of the backbone part of these amino acids dependent on the properties of the side chain groups. These findings provide insights into EE interaction mechanisms with the backbone parts of amino acids and low energy EE induced fragmentation of amino acids and even peptides and proteins.


Asunto(s)
Aminoácidos/química , Electrones , Simulación de Dinámica Molecular , Teoría Cuántica , Aniones/química , Transporte de Electrón , Soluciones , Agua/química
13.
J Phys Chem A ; 118(39): 9212-9, 2014 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-24831567

RESUMEN

We present an ab initio molecular dynamics simulation study of a CH3CN-(H2O)40 cluster with an excess electron (EE) injected vertically in this work. Instead of surface bound or internally solvated electron, a hydrated CH3CN(-) is first formed as the CN transient after geometrical relaxation. The driving forces for the formation of CH3CN(-) are bending vibration of ∠CCN angle, which initiates transfer of an extra charge to the CH3CN LUMO, and hydration effect of the immediate water molecules, which plays a stabilizing role. Solvent thermal fluctuation can lead to different resonances (the quasi-C2-resonance versus quasi-N-resonance) from the CN transient and further cause the hydrated CH3CN(-) system to evolve via two distinctly different pathways featuring spontaneous proton transfer to the central C and N sites, producing two different protonation products, respectively. The solvent thermal fluctuation induced formation of hydrogen bonding with the corresponding sites (C2 versus N) is responsible for the quasi-resonances and interconversion between three resonant structures and further proton transfers featuring spontaneous transfer of a proton to C2 or to N from its interacting water molecule. The duration of CH3CN(-) for either of the two proton transfer processes is less than 200 fs. On the basis of experimental ESR results in which only the CH3CHN radical was found and present theoretical calculations, it is suggested that the trans-CH3CNH radical can be further converted to the CH3CHN radical via a water-mediated hydrogen atom transfer path.


Asunto(s)
Acetonitrilos/química , Solventes/química , Agua/química , Electrones , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Protones , Vibración
14.
Anal Chim Acta ; 1303: 342512, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38609275

RESUMEN

BACKGROUND: Various surface-enhanced Raman spectroscopy (SERS) substrate preparation methods have been reported, however, how to tune the "gap" between nanostructures to make more "hot spots" is still a barrier that restricts their application. The gap between nanostructures is usually fixed when the substrates are prepared. In other words, it is hard to tune interparticle distances for maximum electromagnetic coupling during substrate preparation process. Therefore, an in-situ substrate optimization method that could monitor the SERS signal intensity changes, i.e., to find the optimum gap width and particle size, during substrate preparation process is needed. RESULTS: A method based on the galvanic replacement reaction (GRR) is proposed for the in-situ gap width tuning between nanostructures as well as for the optimization of SERS substrates. Noble metal nanoparticles (NPs) form and grow on the sacrificial templates' surface while noble metal ions are reduced by sacrificial metal (oxides) in GRR. Along with the fresh and clean NPs' surface generated, the gap between two noble metal NPs decreases with the growth of the NPs. To demonstrate this strategy, cuprous oxide/Ti (Cu2O/Ti) sacrificial templates were prepared, and then a GRR was carried out with HAuCl4. The real-time SERS detection during GRR show that the optimum reaction time (ORT) is 300 ± 30 s. Furthermore, SERS performance testing was conducted on the optimized substrate, revealing that the detection limit for crystal violet can reach 1.96 × 10-11 M, confirming the feasibility of this method. SIGNIFICANCE AND NOVELTY: By monitoring the in-situ SERS signal of probes during GRR will obtain an "optimal state" of the SERS substrate with optimal gap width and particle size. The SERS substrate preparation and optimization strategy proposed in this article not only provides a simple, efficient, and low-cost method to fabricate surface-clean noble NPs but also paves the way for the in-situ optimization of NPs size and gap width between NPs which could achieve wider applications of SERS.

15.
Artículo en Inglés | MEDLINE | ID: mdl-37913551

RESUMEN

The recycling of spent graphite from waste lithium-ion batteries (LIBs) holds great importance in terms of environmental protection and conservation of natural resources. In this study, a simple two-step method involving heat treatment and solution washing was employed to recycle spent graphite. Subsequently, the recycled graphite was milled with red phosphorus to create a carbon/red phosphorus composite that served as an anode material for the new LIBs, aiming to address the low capacity issue. In a half-cell configuration, the carbon/red phosphorus composite exhibited remarkable cycling stability, maintaining a capacity of 721.7 mAh g-1 after 500 cycles at 0.2 A g-1, and demonstrated an excellent rate performance with a capacity of 276.2 mAh g-1 at 3 A g-1. The improved performance can be attributed to the structure of the composite, where the red phosphorus particles are covered by the carbon layer. This composite outperformed pure recycled graphite, highlighting its potential in enhancing the electrochemical properties of LIBs. Furthermore, when the carbon/red phosphorus composite was assembled into a full-cell configuration with LiCoO2 as the cathode material, it displayed a stable electrochemical performance, further validating its practical applicability. This work presents a promising and green strategy for recycling spent graphite and using it in the production of new batteries. The findings offer a high potential for commercialization, contributing to the advancement of sustainable and ecofriendly energy storage technologies.

16.
Front Chem ; 10: 920123, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35815217

RESUMEN

Antigen CD133 is a glycoprotein present on the surface of cancer stem cells (CSCs), which is a key molecule to regulate the fate of stem cells and a functional marker of stem cells. Herein, a novel fluorescence "turn-on" nano-aptamer sensor for quantifying CD133 was designed using hybridization between CD133-targeted aptamers and partially complementary paired RNA (ssRNA), which were modified on the surface of quantum dots (QDs) and gold nanoparticles (AuNPs), respectively. Owing to the hybridization of aptamers and ssRNA, the distance between QDs and AuNPs was shortened, which caused fluorescence resonance energy transfer (FRET) between them, and the florescence of QDs was quenched by AuNPs. When CD133 competitively replaced ssRNA and was bound to aptamers, AuNPs-ssRNA could be released, which led to a recovery of fluorescent signals of QDs. The increase in the relative value of fluorescence intensity was investigated to linearly correlate with the CD133 concentration in the range of 0-1.539 µM, and the detection limit was 6.99 nM. In confocal images of A549 cells, the CD133 aptamer sensor was further proved applicable in lung cancer cell samples with specificity, precision, and accuracy. Compared with complicated methods, this study provided a fresh approach to develop a highly sensitive and selective detection sensor for CSC markers.

17.
ACS Appl Mater Interfaces ; 11(20): 18662-18670, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31050881

RESUMEN

Boosting electrochemical sodium storage properties is achieved by utilizing functionalized N-doped carbon nanotube arrays (NCNAs) as anode materials. The NCNA anodes are first fabricated by self-polymerization of dopamine on cobalt hydroxide nanorod arrays as the template. The NCNAs with diameters of 100-120 nm are grown vertically to Ni foam, forming self-supported nanotube arrays. Such a structure has attractive advantages including large porosity and surface area, good electrical conductivity and mechanical strength. Consequently, the NCNAs are demonstrated to achieve excellent sodium storage performances with high capacity (335 mA h g-1 at 100 mA g-1), good rate capability (140 mA h g-1 at 2 A g-1), and superior capacity retention of 90.9% after 500 cycles. Especially, high performance is verified in the assembled full cells by using an NCNA anode and Na3V2(PO4)3/C cathode. The developed synthetic strategy provides an effective approach for the fabrication of advanced heteroatom-doped carbon-based electrodes for electrochemical energy storage.

18.
Nanoscale Res Lett ; 14(1): 63, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30790094

RESUMEN

Surfactant-free and low Au loading Cu2O@Au and Au hollow cubes, based on electrodeposited Cu2O cubes as sacrificed templates, were prepared by means of a galvanic replacement reaction (GRR). The electrocatalytical performance of the as-prepared catalysts towards carbon dioxide (CO2) electrochemical reduction was evaluated. The experimental results show that Cu2O@Au catalyst can convert CO2 to carbon monoxide (CO) with a maximum Faradaic efficiency (FE) of ~ 30.1% at the potential of - 1.0 V (vs. RHE) and is about twice the FE of the other catalysts at the same potential. By comparison, such electrocatalytical enhancement is attributed to the metal-oxide interface in Cu2O@Au.

19.
RSC Adv ; 8(5): 2777-2785, 2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35541474

RESUMEN

To clarify the biologically significant sequence effect existing in the formation of the pyrimidine-type radicals induced DNA intrastrand cross-links, addition mechanisms between the uridine-5-methyl (˙UCH2 ), 6-hydroxy-5,6-dihydrothymidine-5-yl (˙T6OH), and 6-hydroxy-5,6-dihydrocytidine-5-yl (˙C6OH) radicals and their 3'/5' neighboring deoxyguanosines (dG) are explored in the present study employing the model 5'-G(˙UCH2 )-3', 5'-(˙UCH2 )G-3', 5'-G(˙T6OH)-3', 5'-(˙T6OH)G-3', 5'-G(˙C6OH)-3', and 5'-(˙C6OH)G-3' sequences. It is found that the 5' G/C8 additions of the three radicals are all simple direct one-step reactions inducing only relatively small structural changes, while a conformational adjustment involving orientation transitions of both nucleobase moieties and twisting of the DNA backbone is indispensable for each 3' G/C8 addition. Furthermore, markedly positive reaction free energy requirements are estimated for these conformational transformations making the 3' G/C8 additions of the three radicals thermodynamically much more unfavorable than the corresponding 5' G/C8 additions. Such essential conformational adjustments along the 3' G/C8 addition paths that structurally greatly influence the local DNA structures and thermodynamically substantially reduce the addition efficiencies may be the reasons responsible for the differences in the formation yields and biological consequences of the pyrimidine-type radicals induced DNA intrastrand cross-link lesions.

20.
J Phys Chem B ; 120(10): 2649-57, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26913546

RESUMEN

Experimental studies showed that high energy radiation induced base release and DNA backbone breaks mainly occur at the neighboring 5' nucleotide when a single-stranded DNA is modified by radiosensitizing 5-halogenated deoxyuridines. However, no mechanism can be used to interpret these experimental observations. To better understand the radiosensitivity of 5-halogenated deoxyuridines, mechanisms involving hydrogen abstraction by the uracil-5-yl radical from the C2' and C3' positions of an adjacent nucleotide separately followed by the C3'-O3' or N-glycosidic bond rupture and the P-O3' bond breakage are investigated in the DNA sequence 5'-TU(•)-3' employing density functional theory calculations in the present study. It is found that hydrogen abstractions from both positions are comparable with the one from the C2' site slightly more favorable. The N-glycosidic bond cleavage in the neighboring 5' nucleotide following the internucleotide C2'-Ha abstraction is estimated to have the lowest activation free energies, indicating that the adjacent 5' base release dominates electron induced damage to single-stranded DNA incorporated by 5-halogenated deoxyuridines. Relative to the P-O3' bond breakage after the internucleotide C3'-H abstraction, the C3'-O3' bond rupture in the neighboring 5' nucleotide following the internucleotide C2'-Ha abstraction is predicted to have a lower activation free energy, implying that single-stranded DNA backbone breaks are prone to occur at the C3'-O3' bond site. The 5'-TU(•)-3' species has substantial electron affinity and can even capture a hydrated electron, forming the 5'-TU(-)-3' anion. However, the electron induced C3'-O3' bond rupture in 5'-TU(-)-3' anion via a pathway of internucleotide proton abstraction is only minor in both the gas phase and aqueous solution. The present theoretical predictions can interpret rationally experimental observations, thereby demonstrating that the mechanisms proposed here are responsible for high energy radiation induced damage to single-stranded DNA incorporated by radiosensitizing 5-halogenated deoxyuridines. By comparing with previous results, our work proves that the radiosensitizing action of 5-bromo-2-deoxyuridine is not weaker but stronger than its isomer 6-bromo-2-deoxyuridine on the basis of the available data.


Asunto(s)
Daño del ADN , ADN de Cadena Simple/química , ADN de Cadena Simple/efectos de la radiación , Desoxiuridina/química , Desoxiuridina/efectos de la radiación , Teoría Cuántica , Humanos , Cinética , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA