Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.234
Filtrar
1.
Immunity ; 56(10): 2342-2357.e10, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37625409

RESUMEN

The heart is an autoimmune-prone organ. It is crucial for the heart to keep injury-induced autoimmunity in check to avoid autoimmune-mediated inflammatory disease. However, little is known about how injury-induced autoimmunity is constrained in hearts. Here, we reveal an unknown intramyocardial immunosuppressive program driven by Tbx1, a DiGeorge syndrome disease gene that encodes a T-box transcription factor (TF). We found induced profound lymphangiogenic and immunomodulatory gene expression changes in lymphatic endothelial cells (LECs) after myocardial infarction (MI). The activated LECs penetrated the infarcted area and functioned as intramyocardial immune hubs to increase the numbers of tolerogenic dendritic cells (tDCs) and regulatory T (Treg) cells through the chemokine Ccl21 and integrin Icam1, thereby inhibiting the expansion of autoreactive CD8+ T cells and promoting reparative macrophage expansion to facilitate post-MI repair. Mimicking its timing and implementation may be an additional approach to treating autoimmunity-mediated cardiac diseases.

2.
Cell ; 153(5): 1064-79, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23706743

RESUMEN

Metabolic adaptation is essential for cell survival during nutrient deprivation. We report that eukaryotic elongation factor 2 kinase (eEF2K), which is activated by AMP-kinase (AMPK), confers cell survival under acute nutrient depletion by blocking translation elongation. Tumor cells exploit this pathway to adapt to nutrient deprivation by reactivating the AMPK-eEF2K axis. Adaptation of transformed cells to nutrient withdrawal is severely compromised in cells lacking eEF2K. Moreover, eEF2K knockdown restored sensitivity to acute nutrient deprivation in highly resistant human tumor cell lines. In vivo, overexpression of eEF2K rendered murine tumors remarkably resistant to caloric restriction. Expression of eEF2K strongly correlated with overall survival in human medulloblastoma and glioblastoma multiforme. Finally, C. elegans strains deficient in efk-1, the eEF2K ortholog, were severely compromised in their response to nutrient depletion. Our data highlight a conserved role for eEF2K in protecting cells from nutrient deprivation and in conferring tumor cell adaptation to metabolic stress. PAPERCLIP:


Asunto(s)
Caenorhabditis elegans/metabolismo , Quinasa del Factor 2 de Elongación/metabolismo , Neoplasias/fisiopatología , Extensión de la Cadena Peptídica de Translación , Transducción de Señal , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Neoplasias Encefálicas/fisiopatología , Caenorhabditis elegans/genética , Supervivencia Celular , Transformación Celular Neoplásica , Quinasa del Factor 2 de Elongación/genética , Privación de Alimentos , Glioblastoma/fisiopatología , Células HeLa , Humanos , Ratones , Ratones Desnudos , Células 3T3 NIH , Trasplante de Neoplasias , Factor 2 de Elongación Peptídica/metabolismo , Trasplante Heterólogo
3.
PLoS Biol ; 22(1): e3002375, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38236815

RESUMEN

Detecting imminent collisions is essential for survival. Here, we used high-resolution fMRI at 7 Tesla to investigate the role of attention and consciousness for detecting collision trajectory in human subcortical pathways. Healthy participants can precisely discriminate collision from near-miss trajectory of an approaching object, with pupil size change reflecting collision sensitivity. Subcortical pathways from the superior colliculus (SC) to the ventromedial pulvinar (vmPul) and ventral tegmental area (VTA) exhibited collision-sensitive responses even when participants were not paying attention to the looming stimuli. For hemianopic patients with unilateral lesions of the geniculostriate pathway, the ipsilesional SC and VTA showed significant activation to collision stimuli in their scotoma. Furthermore, stronger SC responses predicted better behavioral performance in collision detection even in the absence of awareness. Therefore, human tectofugal pathways could automatically detect collision trajectories without the observers' attention to and awareness of looming stimuli, supporting "blindsight" detection of impending visual threats.


Asunto(s)
Percepción de Movimiento , Pulvinar , Humanos , Percepción de Movimiento/fisiología , Colículos Superiores/fisiología , Imagen por Resonancia Magnética , Pulvinar/diagnóstico por imagen , Estimulación Luminosa , Vías Visuales/fisiología
4.
Proc Natl Acad Sci U S A ; 121(19): e2301436121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38687798

RESUMEN

Amid the discourse on foreign influence investigations in research, this study examines the impact of NIH-initiated investigations starting in 2018 on U.S. scientists' productivity, focusing on those collaborating with Chinese peers. Using publication data from 2010 to 2021, we analyze over 113,000 scientists and find that investigations coincide with reduced productivity for those with China collaborations compared to those with other international collaborators, especially when accounting for publication impact. The decline is particularly pronounced in fields that received greater preinvestigation NIH funding and engaged more in U.S.-China collaborations. Indications of scientist migration and broader scientific progress implications also emerge. We also offer insights into the underlying mechanisms via qualitative interviews.


Asunto(s)
National Institutes of Health (U.S.) , China , Estados Unidos , Humanos , Cooperación Internacional , Investigadores/estadística & datos numéricos , Investigación Biomédica
5.
Proc Natl Acad Sci U S A ; 121(25): e2400546121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857407

RESUMEN

Reduction of carbon dioxide (CO2) by renewable electricity to produce multicarbon chemicals, such as ethylene (C2H4), continues to be a challenge because of insufficient Faradaic efficiency, low production rates, and complex mechanistic pathways. Here, we report that the rate-determining steps (RDS) on common copper (Cu) surfaces diverge in CO2 electroreduction, leading to distinct catalytic performances. Through a combination of experimental and computational studies, we reveal that C─C bond-making is the RDS on Cu(100), whereas the protonation of *CO with adsorbed water becomes rate-limiting on Cu(111) with a higher energy barrier. On an oxide-derived Cu(100)-dominant Cu catalyst, we reach a high C2H4 Faradaic efficiency of 72%, partial current density of 359 mA cm-2, and long-term stability exceeding 100 h at 500 mA cm-2, greatly outperforming its Cu(111)-rich counterpart. We further demonstrate constant C2H4 selectivity of >60% over 70 h in a membrane electrode assembly electrolyzer with a full-cell energy efficiency of 23.4%.

6.
Proc Natl Acad Sci U S A ; 120(35): e2304519120, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37611057

RESUMEN

Biological cilia, hairlike organelles on cell surfaces, often exhibit collective wavelike motion known as metachrony, which helps generating fluid flow. Inspired by nature, researchers have developed artificial cilia as microfluidic actuators, exploring several methods to mimic the metachrony. However, reported methods are difficult to miniaturize because they require either control of individual cilia properties or the generation of a complex external magnetic field. We introduce a concept that generates metachronal motion of magnetic artificial cilia (MAC), even though the MAC are all identical, and the applied external magnetic field is uniform. This is achieved by integrating a paramagnetic substructure in the substrate underneath the MAC. Uniquely, we can create both symplectic and antiplectic metachrony by changing the relative positions of MAC and substructure. We demonstrate the flow generation of the two metachronal motions in both high and low Reynolds number conditions. Our research marks a significant milestone by breaking the size limitation barrier in metachronal artificial cilia. This achievement not only showcases the potential of nature-inspired engineering but also opens up a host of exciting opportunities for designing and optimizing microsystems with enhanced fluid manipulation capabilities.


Asunto(s)
Cilios , Campos Magnéticos , Fenómenos Físicos , Movimiento (Física) , Membrana Celular
7.
Plant J ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38924284

RESUMEN

Verticillium dahliae, a soil-borne fungal pathogen, compromises host innate immunity by secreting a plethora of effectors, thereby facilitating host colonization and causing substantial yield and quality losses. The mechanisms underlying the modulation of cotton immunity by V. dahliae effectors are predominantly unexplored. In this study, we identified that the V. dahliae effector Vd6317 inhibits plant cell death triggered by Vd424Y and enhances PVX viral infection in Nicotiana benthamiana. Attenuation of Vd6317 significantly decreased the virulence of V. dahliae, whereas ectopic expression of Vd6317 in Arabidopsis and cotton enhanced susceptibility to V. dahliae infection, underscoring Vd6317's critical role in pathogenicity. We observed that Vd6317 targeted the Arabidopsis immune regulator AtNAC53, thereby impeding its transcriptional activity on the defense-associated gene AtUGT74E2. Arabidopsis nac53 and ugt74e2 mutants exhibited heightened sensitivity to V. dahliae compared to wild-type plants. A mutation at the conserved residue 193L of Vd6317 abrogated its interaction with AtNAC53 and reduced the virulence of V. dahliae, which was partially attributable to a reduction in Vd6317 protein stability. Our findings unveil a hitherto unrecognized regulatory mechanism by which the V. dahliae effector Vd6317 directly inhibits the plant transcription factor AtNAC53 activity to suppress the expression of AtUGT74E2 and plant defense.

8.
Genome Res ; 32(10): 1852-1861, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36195344

RESUMEN

Short tandem repeats (STRs) represent an important class of genetic variation that can contribute to phenotypic differences. Although millions of single nucleotide variants (SNVs) and short indels have been identified among wild Caenorhabditis elegans strains, the natural diversity in STRs remains unknown. Here, we characterized the distribution of 31,991 STRs with motif lengths of 1-6 bp in the reference genome of C. elegans Of these STRs, 27,667 harbored polymorphisms across 540 wild strains and only 9691 polymorphic STRs (pSTRs) had complete genotype data for more than 90% of the strains. Compared with the reference genome, the pSTRs showed more contraction than expansion. We found that STRs with different motif lengths were enriched in different genomic features, among which coding regions showed the lowest STR diversity and constrained STR mutations. STR diversity also showed similar genetic divergence and selection signatures among wild strains as in previous studies using SNVs. We further identified STR variation in two mutation accumulation line panels that were derived from two wild strains and found background-dependent and fitness-dependent STR mutations. We also performed the first genome-wide association analyses between natural variation in STRs and organismal phenotypic variation among wild C. elegans strains. Overall, our results delineate the first large-scale characterization of STR variation in wild C. elegans strains and highlight the effects of selection on STR mutations.


Asunto(s)
Caenorhabditis elegans , Estudio de Asociación del Genoma Completo , Animales , Caenorhabditis elegans/genética , Repeticiones de Microsatélite , Genotipo , Mutación INDEL
9.
Bioinformatics ; 40(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38429953

RESUMEN

MOTIVATION: Promoters with desirable properties are crucial in biotechnological applications. Generative AI (GenAI) has demonstrated potential in creating novel synthetic promoters with significantly enhanced functionality. However, these methods' reliance on various programming frameworks and specific task-oriented contexts limits their flexibilities. Overcoming these limitations is essential for researchers to fully leverage the power of GenAI to design promoters for their tasks. RESULTS: Here, we introduce GPro (Generative AI-empowered toolkit for promoter design), a user-friendly toolkit that integrates a collection of cutting-edge GenAI-empowered approaches for promoter design. This toolkit provides a standardized pipeline covering essential promoter design processes, including training, optimization, and evaluation. Several detailed demos are provided to reproduce state-of-the-art promoter design pipelines. GPro's user-friendly interface makes it accessible to a wide range of users including non-AI experts. It also offers a variety of optional algorithms for each design process, and gives users the flexibility to compare methods and create customized pipelines. AVAILABILITY AND IMPLEMENTATION: GPro is released as an open-source software under the MIT license. The source code for GPro is available on GitHub for Linux, macOS, and Windows: https://github.com/WangLabTHU/GPro, and is available for download via Zenodo repository at https://zenodo.org/doi/10.5281/zenodo.10681733.


Asunto(s)
Algoritmos , Programas Informáticos , Regiones Promotoras Genéticas , Inteligencia Artificial
10.
Hepatology ; 79(2): 289-306, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37540187

RESUMEN

BACKGROUND AND AIMS: Molecular classification is a promising tool for prognosis prediction and optimizing precision therapy for HCC. Here, we aimed to develop a molecular classification of HCC based on the fatty acid degradation (FAD) pathway, fully characterize it, and evaluate its ability in guiding personalized therapy. APPROACH AND RESULTS: We performed RNA sequencing (RNA-seq), PCR-array, lipidomics, metabolomics, and proteomics analysis of 41 patients with HCC, in which 17 patients received anti-programmed cell death-1 (PD-1) therapy. Single-cell RNA sequencing (scRNA-seq) was performed to explore the tumor microenvironment. Nearly, 60 publicly available multiomics data sets were analyzed. The associations between FAD subtypes and response to sorafenib, transarterial chemoembolization (TACE), immune checkpoint inhibitor (ICI) were assessed in patient cohorts, patient-derived xenograft (PDX), and spontaneous mouse model ls. A novel molecular classification named F subtype (F1, F2, and F3) was identified based on the FAD pathway, distinguished by clinical, mutational, epigenetic, metabolic, and immunological characteristics. F1 subtypes exhibited high infiltration with immunosuppressive microenvironment. Subtype-specific therapeutic strategies were identified, in which F1 subtypes with the lowest FAD activities represent responders to compounds YM-155 and Alisertib, sorafenib, anti-PD1, anti-PD-L1, and atezolizumab plus bevacizumab (T + A) treatment, while F3 subtypes with the highest FAD activities are responders to TACE. F2 subtypes, the intermediate status between F1 and F3, are potential responders to T + A combinations. We provide preliminary evidence that the FAD subtypes can be diagnosed based on liquid biopsies. CONCLUSIONS: We identified 3 FAD subtypes with unique clinical and biological characteristics, which could optimize individual cancer patient therapy and help clinical decision-making.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Animales , Ratones , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Sorafenib/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Multiómica , Medicina de Precisión , Ácidos Grasos , Microambiente Tumoral
11.
Acc Chem Res ; 57(5): 714-725, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38349801

RESUMEN

ConspectusThe hydrogenative conversion of both CO and CO2 into high-value multicarbon (C2+) compounds, such as olefins, aromatic hydrocarbons, ethanol, and liquid fuels, has attracted much recent attention. The hydrogenation of CO is related to the chemical utilization of various carbon resources including shale gas, biomass, coal, and carbon-containing wastes via syngas (a mixture of H2 and CO), while the hydrogenation of CO2 by green H2 to chemicals and liquid fuels would contribute to recycling CO2 for carbon neutrality. The state-of-the-art technologies for the hydrogenation of CO/CO2 to C2+ compounds primarily rely on a direct route via Fischer-Tropsch (FT) synthesis and an indirect route via two methanol-mediated processes, i.e., methanol synthesis from CO/CO2 and methanol to C2+ compounds. The direct route would be more energy- and cost-efficient owing to the reduced operation units, but the product selectivity of the direct route via FT synthesis is limited by the Anderson-Schulz-Flory (ASF) distribution. Selectivity control for the direct hydrogenation of CO/CO2 to a high-value C2+ compound is one of the most challenging goals in the field of C1 chemistry, i.e., chemistry for the transformation of one-carbon (C1) molecules.We have developed a relay-catalysis strategy to solve the selectivity challenge arising from the complicated reaction network in the hydrogenation of CO/CO2 to C2+ compounds involving multiple intermediates and reaction channels, which inevitably lead to side reactions and byproducts over a conventional heterogeneous catalyst. The core of relay catalysis is to design a single tandem-reaction channel, which can direct the reaction to the target product controllably, by choosing appropriate intermediates (or intermediate products) and reaction steps connecting these intermediates, and arranging optimized yet matched catalysts to implement these steps like a relay. This Account showcases representative relay-catalysis systems developed by our group in the past decade for the synthesis of liquid fuels, lower (C2-C4) olefins, aromatics, and C2+ oxygenates from CO/CO2 with selectivity breaking the limitation of conventional catalysts. These relay systems are typically composed of a metal or metal oxide for CO/CO2/H2 activation and a zeolite for C-C coupling or reconstruction, as well as a third or even a fourth catalyst component with other functions if necessary. The mechanisms for the activation of H2 and CO/CO2 on metal oxides, which are distinct from that on the conventional transition or noble metal surfaces, are discussed with emphasis on the role of oxygen vacancies. Zeolites catalyze the conversion of intermediates (including hydrocracking/isomerization of heavier hydrocarbons, methanol-to-hydrocarbon reactions, and carbonylation of methanol/dimethyl ether) in the relay system, and the selectivity is mainly controlled by the Brønsted acidity and the shape-selectivity or the confinement effect of zeolites. We demonstrate that the thermodynamic/kinetic matching of the relay steps, the proximity and spatial arrangement of the catalyst components, and the transportation of intermediates/products in sequence are the key issues guiding the selection of each catalyst component and the construction of an efficient relay-catalysis system. Our methodology would also be useful for the transformation of other C1 molecules via controlled C-C coupling, inspiring more efforts toward precision catalysis.

12.
Nucleic Acids Res ; 51(D1): D479-D487, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36165955

RESUMEN

Post-translational modifications (PTMs) are critical molecular mechanisms that regulate protein functions temporally and spatially in various organisms. Since most PTMs are dynamically regulated, quantifying PTM events under different states is crucial for understanding biological processes and diseases. With the rapid development of high-throughput proteomics technologies, massive quantitative PTM proteome datasets have been generated. Thus, a comprehensive one-stop data resource for surfing big data will benefit the community. Here, we updated our previous phosphorylation dynamics database qPhos to the qPTM (http://qptm.omicsbio.info). In qPTM, 11 482 553 quantification events among six types of PTMs, including phosphorylation, acetylation, glycosylation, methylation, SUMOylation and ubiquitylation in four different organisms were collected and integrated, and the matched proteome datasets were included if available. The raw mass spectrometry based false discovery rate control and the recurrences of identifications among datasets were integrated into a scoring system to assess the reliability of the PTM sites. Browse and search functions were improved to facilitate users in swiftly and accurately acquiring specific information. The results page was revised with more abundant annotations, and time-course dynamics data were visualized in trend lines. We expected the qPTM database to be a much more powerful and comprehensive data repository for the PTM research community.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteoma , Animales , Humanos , Ratones , Ratas , Fosforilación , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Bases de Datos Genéticas
13.
Proc Natl Acad Sci U S A ; 119(26): e2121513119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35737832

RESUMEN

Both chronic obstructive pulmonary disease (COPD) and asthma are severe respiratory diseases. Bitter receptor-mediated bronchodilation is a potential therapy for asthma, but the mechanism underlying the agonistic relaxation of airway smooth muscle (ASM) is not well defined. By exploring the ASM relaxation mechanism of bitter substances, we observed that pretreatment with the bitter substances nearly abolished the methacholine (MCh)-induced increase in the ASM cell (ASMC) calcium concentration, thereby suppressing the calcium-induced contraction release. The ASM relaxation was significantly inhibited by simultaneous deletion of three Gαt proteins, suggesting an interaction between Tas2R and AChR signaling cascades in the relaxation process. Biochemically, the Gαt released by Tas2R activation complexes with AChR and blocks the Gαq cycling of AChR signal transduction. More importantly, a bitter substance, kudinoside A, not only attenuates airway constriction but also significantly inhibits pulmonary inflammation and tissue remodeling in COPD rats, indicating its modulation of additional Gαq-associated pathological processes. Thus, our results suggest that Tas2R activation may be an ideal strategy for halting multiple pathological processes of COPD.


Asunto(s)
Asma , Músculo Liso , Enfermedad Pulmonar Obstructiva Crónica , Receptores Acoplados a Proteínas G , Activación Transcripcional , Animales , Asma/genética , Asma/metabolismo , Asma/fisiopatología , Broncodilatadores/farmacología , Calcio/metabolismo , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Ratas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
14.
J Lipid Res ; 65(3): 100513, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38295985

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease without specific Food and Drug Administration-approved drugs. Recent advances suggest that chromatin remodeling and epigenetic alteration contribute to the development of NAFLD. The functions of the corresponding molecular modulator in NAFLD, however, are still elusive. KDM1A, commonly known as lysine-specific histone demethylase 1, has been reported to increase glucose uptake in hepatocellular carcinoma. In addition, a recent study suggests that inhibition of KDM1A reduces lipid accumulation in primary brown adipocytes. We here investigated the role of KDM1A, one of the most important histone demethylases, in NAFLD. In this study, we observed a significant upregulation of KDM1A in NAFLD mice, monkeys, and humans compared to the control group. Based on these results, we further found that the KDM1A can exacerbate lipid accumulation and inflammation in hepatocytes and mice. Mechanistically, KDM1A exerted its effects by elevating chromatin accessibility, subsequently promoting the development of NAFLD. Furthermore, the mutation of KDM1A blunted its capability to promote the development of NAFLD. In summary, our study discovered that KDM1A exacerbates hepatic steatosis and inflammation in NAFLD via increasing chromatin accessibility, further indicating the importance of harnessing chromatin remodeling and epigenetic alteration in combating NAFLD. KDM1A might be considered as a potential therapeutic target in this regard.


Asunto(s)
Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Cromatina/genética , Histona Demetilasas/genética , Inflamación/genética , Lípidos
15.
Plant J ; 115(4): 967-985, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37158663

RESUMEN

N6 -Methyladenosine (m6 A) is the most abundant methylation modification in eukaryotic mRNA. The discovery of the dynamic and reversible regulatory mechanism of m6 A has greatly promoted the development of m6 A-led epitranscriptomics. However, the characterization of m6 A in cotton fiber is still unknown. Here, we reveal the potential link between m6 A modification and cotton fiber elongation by parallel m6 A-immunoprecipitation-sequencing (m6 A-seq) and RNA-seq analysis of fibers from the short fiber mutants Ligonliness-2 (Li2 ) and wild-type (WT). This study demonstrated a higher level of m6 A in the Li2 mutant, with the enrichment of m6 A modifications in the stop codon, 3'-untranslated region and coding sequence regions than in WT cotton. In the correlation analysis between genes containing differential m6 A modifications and differentially expressed genes, we identified several genes that could potentially regulate fiber elongation, including cytoskeleton, microtubule binding, cell wall and transcription factors (TFs). We further confirmed that the methylation of m6 A affected the mRNA stability of these fiber elongation-related genes including the TF GhMYB44, which showed the highest expression level in the RNA-seq data and m6 A methylation in the m6 A-seq data. Next, the overexpression of GhMYB44 reduces fiber elongation, whereas the silencing of GhMYB44 produces longer fibers. In summary, these results uncover that m6 A methylation regulated the expression of genes related to fiber development by affecting mRNA's stability, ultimately affecting cotton fiber elongation.


Asunto(s)
Fibra de Algodón , Gossypium , RNA-Seq , ARN Mensajero/genética , ARN Mensajero/metabolismo , Gossypium/genética , Gossypium/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
16.
J Am Chem Soc ; 146(17): 11876-11886, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38626315

RESUMEN

Electrocatalytic reduction of biomass-derived furfural (FF) represents a sustainable route to produce furfuryl alcohol (FA) and 2-methylfuran (MF) as a value-added chemical and a biofuel, respectively. However, achieving high selectivity for MF as well as tuning the selectivity between FA and MF within one reaction system remain challenging. Herein, we have reported an electrode-electrolyte interface modification strategy, enabling FA and MF selectivity steering under the same reaction conditions. Specifically, by modifying copper (Cu) electrocatalysts with butyl trimethylammonium bromide (BTAB), we achieved a dramatic shift in selectivity from producing FA (selectivity: 83.8%; Faradaic efficiency, FE: 68.9%) to MF (selectivity: 80.1%; FE: 74.8%). We demonstrated that BTAB adsorption over Cu modulates the electrical double layer (EDL) structure, which repels interfacial water and weakens the hydrogen-bond (H-bond) network for proton transfer, thus impeding FF-to-FA conversion by suppression of the hydrogen atom transfer (HAT) process. On the contrary, FF-to-MF conversion was less affected. This work shows the potential of engineering of the electrode-electrolyte interface for selectivity control in electrocatalysis.

17.
J Am Chem Soc ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959221

RESUMEN

The magnetoelectric material has attracted multidisciplinary interest in the past decade for its potential to accommodate various functions. Especially, the external electric field can drive the quantum behaviors of such materials via the spin-electric coupling effect, with the advantages of high spatial resolution and low energy cost. In this work, the spin-electric coupling effect of Mn2+-doped ferroelectric organic-inorganic hybrid perovskite [(CH3)3NCH2Cl]CdCl3 with a large piezoelectric effect was investigated. The electric field manipulation efficiency for the allowed transitions was determined by the pulsed electron paramagnetic resonance. The orientation-included Hamiltonian of the spin-electric coupling effect was obtained via simulating the angle-dependent electric field modulated continuous-wave electron paramagnetic resonance. The results demonstrate that the applied electric field affects not only the principal values of the zero-field splitting tensor but also its principal axis directions. This work proposes and exemplifies a route to understand the spin-electric coupling effect originating from the crystal field imposed on a spin ion being modified by the applied electric field, which may guide the rational screening and designing of hybrid perovskite ferroelectrics that satisfy the efficiency requirement of electric field manipulation of spins in quantum information applications.

18.
J Am Chem Soc ; 146(8): 5622-5633, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38373280

RESUMEN

Ethylene glycol is an essential commodity chemical with high demand, which is conventionally produced via thermocatalytic oxidation of ethylene with huge fossil fuel consumption and CO2 emission. The one-step electrochemical approach offers a sustainable route but suffers from reliance on noble metal catalysts, low activity, and mediocre selectivity. Herein, we report a one-step electrochemical oxidation of ethylene to ethylene glycol over an earth-abundant metal-based molecular catalyst, a cobalt phthalocyanine supported on a carbon nanotube (CoPc/CNT). The catalyst delivers ethylene glycol with 100% selectivity and 1.78 min-1 turnover frequency at room temperature and ambient pressure, more competitive than those obtained over palladium catalysts. Experimental data demonstrate that the catalyst orchestrates multiple tasks in sequence, involving electrochemical water activation to generate high-valence Co-oxo species, ethylene epoxidation to afford an ethylene oxide intermediate via oxygen transfer, and eventually ring-opening of ethylene oxide to ethylene glycol facilitated by in situ formed Lewis acid site. This work offers a great opportunity for commodity chemicals synthesis based on a one-step, earth-abundant metal-catalyzed, and renewable electricity-driven route.

19.
J Am Chem Soc ; 146(21): 14528-14538, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38742912

RESUMEN

Composite oxides have been widely applied in the hydrogenation of CO/CO2 to methanol or as the component of bifunctional oxide-zeolite for the synthesis of hydrocarbon chemicals. However, it is still challenging to disentangle the stepwise formation mechanism of CH3OH at working conditions and selectively convert CO2 to hydrocarbon chemicals with narrow distribution. Here, we investigate the reaction network of the hydrogenation of CO2 to methanol over a series of spinel oxides (AB2O4), among which the Zn-based nanostructures offer superior performance in methanol synthesis. Through a series of (quasi) in situ spectroscopic characterizations, we evidence that the dissociation of H2 tends to follow a heterolytic pathway and that hydrogenation ability can be regulated by the combination of Zn with Ga or Al. The coordinatively unsaturated metal sites over ZnAl2Ox and ZnGa2Ox originating from oxygen vacancies (OVs) are evidenced to be responsible for the dissociative adsorption and activation of CO2. The evolution of the reaction intermediates, including both carbonaceous and hydrogen species at high temperatures and pressures over the spinel oxides, has been experimentally elaborated at the atomic level. With the integration of a series of zeolites or zeotypes, high selectivities of hydrocarbon chemicals with narrow distributions can be directly produced from CO2 and H2, offering a promising route for CO2 utilization.

20.
Biochem Cell Biol ; 102(1): 60-72, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37816258

RESUMEN

Acute T-lymphocyte leukemia (T-ALL) is a malignant tumor disease. RNA-binding protein neotumor ventral antigen-1 (NOVA1) is highly expressed in bone marrow mononuclear cells of T-ALL patients, while the role of NOVA1 in T-ALL progression remains unknown. The gain- and loss-of-function studies for NOVA1 were performed in Jurkat and CCRF-CEM cells. NOVA1 overexpression promoted cell proliferation and cell cycle progression. NOVA1 knockdown increased the apoptosis rate of T-ALL cells. Ubiquitin-specific protease 44 (USP44), a nuclear protein with deubiquitinase catalytic activity, has been reported to play an oncogene role in human T-cell leukemia. USP44 expression was positively associated with NOVA1, and RNA immunoprecipitation assay verified the binding of NOVA1 to the mRNA of USP44. USP44 knockdown partially abolished NOVA1-induced cell proliferation and inhibition of apoptosis. The in vivo xenograft experiment was performed by injection of T-ALL tumor cells into the tail vein of NOD/SCID mice. The knockdown of NOVA1 had lower tumorigenicity. NOVA1 knockdown alleviated pathological changes in lung and spleen tissues, and increased the overall survival period and the weight of T-ALL mice. Thus, NOVA1 acts as an accelerator in T-ALL, and its function might be achieved by binding to and stabilizing USP44 mRNA.


Asunto(s)
Antígeno Ventral Neuro-Oncológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Ratones , Animales , ARN Mensajero/genética , Línea Celular Tumoral , Ratones Endogámicos NOD , Ratones SCID , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Linfocitos T/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA