Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.271
Filtrar
1.
Nat Immunol ; 24(8): 1318-1330, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37308665

RESUMEN

Immune checkpoint blockade (ICB) targeting PD-1 and CTLA-4 has revolutionized cancer treatment. However, many cancers do not respond to ICB, prompting the search for additional strategies to achieve durable responses. G-protein-coupled receptors (GPCRs) are the most intensively studied drug targets but are underexplored in immuno-oncology. Here, we cross-integrated large singe-cell RNA-sequencing datasets from CD8+ T cells covering 19 distinct cancer types and identified an enrichment of Gαs-coupled GPCRs on exhausted CD8+ T cells. These include EP2, EP4, A2AR, ß1AR and ß2AR, all of which promote T cell dysfunction. We also developed transgenic mice expressing a chemogenetic CD8-restricted Gαs-DREADD to activate CD8-restricted Gαs signaling and show that a Gαs-PKA signaling axis promotes CD8+ T cell dysfunction and immunotherapy failure. These data indicate that Gαs-GPCRs are druggable immune checkpoints that might be targeted to enhance the response to ICB immunotherapies.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Ratones , Animales , Transducción de Señal , Ratones Transgénicos , Inmunoterapia , Microambiente Tumoral
2.
Cell ; 164(6): 1257-1268, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26967291

RESUMEN

Plants are equipped with the capacity to respond to a large number of diverse signals, both internal ones and those emanating from the environment, that are critical to their survival and adaption as sessile organisms. These signals need to be integrated through highly structured intracellular networks to ensure coherent cellular responses, and in addition, spatiotemporal actions of hormones and peptides both orchestrate local cell differentiation and coordinate growth and physiology over long distances. Further, signal interactions and signaling outputs vary significantly with developmental context. This review discusses our current understanding of the integrated intracellular and intercellular signaling networks that control plant growth.


Asunto(s)
Desarrollo de la Planta , Plantas/metabolismo , Ambiente , Luz , Células Vegetales/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo
3.
Plant Cell ; 36(3): 497-509, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38124350

RESUMEN

Protein O-glycosylation is a nutrient signaling mechanism that plays an essential role in maintaining cellular homeostasis across different species. In plants, SPINDLY (SPY) and SECRET AGENT (SEC) posttranslationally modify hundreds of intracellular proteins with O-fucose and O-linked N-acetylglucosamine, respectively. SPY and SEC play overlapping roles in cellular regulation, and loss of both SPY and SEC causes embryo lethality in Arabidopsis (Arabidopsis thaliana). Using structure-based virtual screening of chemical libraries followed by in vitro and in planta assays, we identified a SPY O-fucosyltransferase inhibitor (SOFTI). Computational analyses predicted that SOFTI binds to the GDP-fucose-binding pocket of SPY and competitively inhibits GDP-fucose binding. In vitro assays confirmed that SOFTI interacts with SPY and inhibits its O-fucosyltransferase activity. Docking analysis identified additional SOFTI analogs that showed stronger inhibitory activities. SOFTI treatment of Arabidopsis seedlings decreased protein O-fucosylation and elicited phenotypes similar to the spy mutants, including early seed germination, increased root hair density, and defective sugar-dependent growth. In contrast, SOFTI did not visibly affect the spy mutant. Similarly, SOFTI inhibited the sugar-dependent growth of tomato (Solanum lycopersicum) seedlings. These results demonstrate that SOFTI is a specific SPY O-fucosyltransferase inhibitor that can be used as a chemical tool for functional studies of O-fucosylation and potentially for agricultural management.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Represoras/metabolismo , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Fucosa/metabolismo , Plantones/metabolismo , Azúcares/metabolismo
4.
Plant Cell ; 35(5): 1318-1333, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36739885

RESUMEN

The recent discovery of SPINDLY (SPY)-catalyzed protein O-fucosylation revealed a novel mechanism for regulating nucleocytoplasmic protein functions in plants. Genetic evidence indicates the important roles of SPY in diverse developmental and physiological processes. However, the upstream signal controlling SPY activity and the downstream substrate proteins O-fucosylated by SPY remain largely unknown. Here, we demonstrated that SPY mediates sugar-dependent growth in Arabidopsis (Arabidopsis thaliana). We further identified hundreds of O-fucosylated proteins using lectin affinity chromatography followed by mass spectrometry. All the O-fucosylation events quantified in our proteomic analyses were undetectable or dramatically decreased in the spy mutants, and thus likely catalyzed by SPY. The O-fucosylome includes mostly nuclear and cytosolic proteins. Many O-fucosylated proteins function in essential cellular processes, phytohormone signaling, and developmental programs, consistent with the genetic functions of SPY. The O-fucosylome also includes many proteins modified by O-linked N-acetylglucosamine (O-GlcNAc) and by phosphorylation downstream of the target of rapamycin (TOR) kinase, revealing the convergence of these nutrient signaling pathways on key regulatory functions such as post-transcriptional/translational regulation and phytohormone responses. Our study identified numerous targets of SPY/O-fucosylation and potential nodes of crosstalk among sugar/nutrient signaling pathways, enabling future dissection of the signaling network that mediates sugar regulation of plant growth and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Represoras/metabolismo , Azúcares/metabolismo , Proteómica
5.
Plant Cell ; 35(3): 975-993, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36660928

RESUMEN

Elucidating enzyme-substrate relationships in posttranslational modification (PTM) networks is crucial for understanding signal transduction pathways but is technically difficult because enzyme-substrate interactions tend to be transient. Here, we demonstrate that TurboID-based proximity labeling (TbPL) effectively and specifically captures the substrates of kinases and phosphatases. TbPL-mass spectrometry (TbPL-MS) identified over 400 proximal proteins of Arabidopsis thaliana BRASSINOSTEROID-INSENSITIVE2 (BIN2), a member of the GLYCOGEN SYNTHASE KINASE 3 (GSK3) family that integrates signaling pathways controlling diverse developmental and acclimation processes. A large portion of the BIN2-proximal proteins showed BIN2-dependent phosphorylation in vivo or in vitro, suggesting that these are BIN2 substrates. Protein-protein interaction network analysis showed that the BIN2-proximal proteins include interactors of BIN2 substrates, revealing a high level of interactions among the BIN2-proximal proteins. Our proteomic analysis establishes the BIN2 signaling network and uncovers BIN2 functions in regulating key cellular processes such as transcription, RNA processing, translation initiation, vesicle trafficking, and cytoskeleton organization. We further discovered significant overlap between the GSK3 phosphorylome and the O-GlcNAcylome, suggesting an evolutionarily ancient relationship between GSK3 and the nutrient-sensing O-glycosylation pathway. Our work presents a powerful method for mapping PTM networks, a large dataset of GSK3 kinase substrates, and important insights into the signaling network that controls key cellular functions underlying plant growth and acclimation.


Asunto(s)
Proteínas Quinasas , Proteómica , Transducción de Señal , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biotina/química , Biotinilación , Brasinoesteroides/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteómica/métodos , Transducción de Señal/fisiología
6.
Mol Cell Proteomics ; 23(3): 100738, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364992

RESUMEN

Wind is one of the most prevalent environmental forces entraining plants to develop various mechano-responses, collectively called thigmomorphogenesis. Largely unknown is how plants transduce these versatile wind force signals downstream to nuclear events and to the development of thigmomorphogenic phenotype or anemotropic response. To identify molecular components at the early steps of the wind force signaling, two mechanical signaling-related phosphoproteins, identified from our previous phosphoproteomic study of Arabidopsis touch response, mitogen-activated protein kinase kinase 1 (MKK1) and 2 (MKK2), were selected for performing in planta TurboID (ID)-based quantitative proximity-labeling (PL) proteomics. This quantitative biotinylproteomics was separately performed on MKK1-ID and MKK2-ID transgenic plants, respectively, using the genetically engineered TurboID biotin ligase expression transgenics as a universal control. This unique PTM proteomics successfully identified 11 and 71 MKK1 and MKK2 putative interactors, respectively. Biotin occupancy ratio (BOR) was found to be an alternative parameter to measure the extent of proximity and specificity between the proximal target proteins and the bait fusion protein. Bioinformatics analysis of these biotinylprotein data also found that TurboID biotin ligase favorably labels the loop region of target proteins. A WInd-Related Kinase 1 (WIRK1), previously known as rapidly accelerated fibrosarcoma (Raf)-like kinase 36 (RAF36), was found to be a putative common interactor for both MKK1 and MKK2 and preferentially interacts with MKK2. Further molecular biology studies of the Arabidopsis RAF36 kinase found that it plays a role in wind regulation of the touch-responsive TCH3 and CML38 gene expression and the phosphorylation of a touch-regulated PATL3 phosphoprotein. Measurement of leaf morphology and shoot gravitropic response of wirk1 (raf36) mutant revealed that the WIRK1 gene is involved in both wind-triggered rosette thigmomorphogenesis and gravitropism of Arabidopsis stems, suggesting that the WIRK1 (RAF36) protein probably functioning upstream of both MKK1 and MKK2 and that it may serve as the crosstalk point among multiple mechano-signal transduction pathways mediating both wind mechano-response and gravitropism.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Gravitropismo , Biotina/metabolismo , Viento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfoproteínas/metabolismo , Ligasas/metabolismo , Calmodulina/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(51): e2314264120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38100418

RESUMEN

The separator with high Young's modulus can avoid the danger of large-sized dendrites, but regulating the chemical behavior of lithium (Li) at the separator/anode interface can effectively eliminate the dendrite issue. Herein, a polyimine aerogel (PIA) with accurate nitrogen (N) functional design is used as the functional separator in Li metal batteries to promote uniform Li nucleation and suppress the dendrite growth. Specifically, the imine (N1) and protonated tertiary amine (N2) sites in the molecular structure of the PIA are significantly different in electron cloud density (ECD) distribution. The N1 site with higher ECD and the N2 site with lower ECD tend to attract and repulse Li+ through electrostatic interactions, respectively. This synergy effect of the PIA separator accelerates the interfacial Li+ diffusion on the Li anode to sustain a uniform two-dimensional Li nucleation behavior. Meanwhile, the well-defined nanochannels of the PIA separator show high affinity to electrolyte and bring uniform Li+ flux for Li plating/stripping. Consequently, the dendrites are effectively suppressed by the PIA separator in routine carbonate electrolyte, and the Li metal batteries with the PIA separator exhibit high Coulombic efficiency and stable high-rate cycling. These findings demonstrate that the ingenious marriage of special chemical structure designs and hierarchical pores can enable the separator to affect the interfacial Li nucleation behavior.

8.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38885310

RESUMEN

Large-scale genomic projects and ancient DNA innovations have ushered in a new paradigm for exploring human evolutionary history. However, the genetic legacy of spatiotemporally diverse ancient Eurasians within Chinese paternal lineages remains unresolved. Here, we report an integrated Y-chromosome genomic database encompassing 15,563 individuals from both modern and ancient Eurasians, including 919 newly reported individuals, to investigate the Chinese paternal genomic diversity. The high-resolution, time-stamped phylogeny reveals multiple diversification events and extensive expansions in the early and middle Neolithic. We identify four major ancient population movements, each associated with technological innovations that have shaped the Chinese paternal landscape. First, the expansion of early East Asians and millet farmers from the Yellow River Basin predominantly carrying O2/D subclades significantly influenced the formation of the Sino-Tibetan people and facilitated the permanent settlement of the Tibetan Plateau. Second, the dispersal of rice farmers from the Yangtze River Valley carrying O1 and certain O2 sublineages reshapes the genetic makeup of southern Han Chinese, as well as the Tai-Kadai, Austronesian, Hmong-Mien, and Austroasiatic people. Third, the Neolithic Siberian Q/C paternal lineages originated and proliferated among hunter-gatherers on the Mongolian Plateau and the Amur River Basin, leaving a significant imprint on the gene pools of northern China. Fourth, the J/G/R paternal lineages derived from western Eurasia, which were initially spread by Yamnaya-related steppe pastoralists, maintain their presence primarily in northwestern China. Overall, our research provides comprehensive genetic evidence elucidating the significant impact of interactions with culturally distinct ancient Eurasians on the patterns of paternal diversity in modern Chinese populations.


Asunto(s)
Pueblo Asiatico , Cromosomas Humanos Y , Migración Humana , Humanos , China , Pueblo Asiatico/genética , Masculino , Cromosomas Humanos Y/genética , ADN Antiguo/análisis , Herencia Paterna , Filogenia , Pueblos del Este de Asia
9.
Mol Cell ; 66(5): 648-657.e4, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575660

RESUMEN

The glycogen synthase kinase-3 (GSK3) family kinases are central cellular regulators highly conserved in all eukaryotes. In Arabidopsis, the GSK3-like kinase BIN2 phosphorylates a range of proteins to control broad developmental processes, and BIN2 is degraded through unknown mechanism upon receptor kinase-mediated brassinosteroid (BR) signaling. Here we identify KIB1 as an F-box E3 ubiquitin ligase that promotes the degradation of BIN2 while blocking its substrate access. Loss-of-function mutations of KIB1 and its homologs abolished BR-induced BIN2 degradation and caused severe BR-insensitive phenotypes. KIB1 directly interacted with BIN2 in a BR-dependent manner and promoted BIN2 ubiquitination in vitro. Expression of an F-box-truncated KIB1 caused BIN2 accumulation but dephosphorylation of its substrate BZR1 and activation of BR responses because KIB1 blocked BIN2 binding to BZR1. Our study demonstrates that KIB1 plays an essential role in BR signaling by inhibiting BIN2 through dual mechanisms of blocking substrate access and promoting degradation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Brasinoesteroides/farmacología , Proteínas F-Box/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Plantas Modificadas Genéticamente/efectos de los fármacos , Proteínas Quinasas/metabolismo , Esteroides Heterocíclicos/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sitios de Unión , Dominio Catalítico , Proteínas de Unión al ADN , Activación Enzimática , Estabilidad de Enzimas , Proteínas F-Box/genética , Genotipo , Glucógeno Sintasa Quinasa 3/genética , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteínas Quinasas/genética , Proteolisis , Transducción de Señal/efectos de los fármacos , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
10.
BMC Biol ; 22(1): 18, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273256

RESUMEN

BACKGROUND: The underrepresentation of Hmong-Mien (HM) people in Asian genomic studies has hindered our comprehensive understanding of the full landscape of their evolutionary history and complex trait architecture. South China is a multi-ethnic region and indigenously settled by ethnolinguistically diverse HM, Austroasiatic (AA), Tai-Kadai (TK), Austronesian (AN), and Sino-Tibetan (ST) people, which is regarded as East Asia's initial cradle of biodiversity. However, previous fragmented genetic studies have only presented a fraction of the landscape of genetic diversity in this region, especially the lack of haplotype-based genomic resources. The deep characterization of demographic history and natural-selection-relevant genetic architecture of HM people was necessary. RESULTS: We reported one HM-specific genomic resource and comprehensively explored the fine-scale genetic structure and adaptative features inferred from the genome-wide SNP data of 440 HM individuals from 33 ethnolinguistic populations, including previously unreported She. We identified solid genetic differentiation between HM people and Han Chinese at 7.64‒15.86 years ago (kya) and split events between southern Chinese inland (Miao/Yao) and coastal (She) HM people in the middle Bronze Age period and the latter obtained more gene flow from Ancient Northern East Asians. Multiple admixture models further confirmed that extensive gene flow from surrounding ST, TK, and AN people entangled in forming the gene pool of Chinese coastal HM people. Genetic findings of isolated shared unique ancestral components based on the sharing alleles and haplotypes deconstructed that HM people from the Yungui Plateau carried the breadth of previously unknown genomic diversity. We identified a direct and recent genetic connection between Chinese inland and Southeast Asian HM people as they shared the most extended identity-by-descent fragments, supporting the long-distance migration hypothesis. Uniparental phylogenetic topology and network-based phylogenetic relationship reconstruction found ancient uniparental founding lineages in southwestern HM people. Finally, the population-specific biological adaptation study identified the shared and differentiated natural selection signatures among inland and coastal HM people associated with physical features and immune functions. The allele frequency spectrum of cancer susceptibility alleles and pharmacogenomic genes showed significant differences between HM and northern Chinese people. CONCLUSIONS: Our extensive genetic evidence combined with the historical documents supported the view that ancient HM people originated from the Yungui regions associated with ancient "Three-Miao tribes" descended from the ancient Daxi-Qujialing-Shijiahe people. Then, some have recently migrated rapidly to Southeast Asia, and some have migrated eastward and mixed respectively with Southeast Asian indigenes, Liangzhu-related coastal ancient populations, and incoming southward ST people. Generally, complex population migration, admixture, and adaptation history contributed to the complicated patterns of population structure of geographically diverse HM people.


Asunto(s)
Pueblos del Este de Asia , Genética de Población , Humanos , China , Genómica , Haplotipos , Filogenia
11.
BMC Biol ; 22(1): 55, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448908

RESUMEN

BACKGROUND: The underrepresentation of human genomic resources from Southern Chinese populations limited their health equality in the precision medicine era and complete understanding of their genetic formation, admixture, and adaptive features. Besides, linguistical and genetic evidence supported the controversial hypothesis of their origin processes. One hotspot case was from the Chinese Guangxi Pinghua Han people (GPH), whose language was significantly similar to Southern Chinese dialects but whose uniparental gene pool was phylogenetically associated with the indigenous Tai-Kadai (TK) people. Here, we analyzed genome-wide SNP data in 619 people from four language families and 56 geographically different populations, in which 261 people from 21 geographically distinct populations were first reported here. RESULTS: We identified significant population stratification among ethnolinguistically diverse Guangxi populations, suggesting their differentiated genetic origin and admixture processes. GPH shared more alleles related to Zhuang than Southern Han Chinese but received more northern ancestry relative to Zhuang. Admixture models and estimates of genetic distances showed that GPH had a close genetic relationship with geographically close TK compared to Northern Han Chinese, supporting their admixture origin hypothesis. Further admixture time and demographic history reconstruction supported GPH was formed via admixture between Northern Han Chinese and Southern TK people. We identified robust signatures associated with lipid metabolisms, such as fatty acid desaturases (FADS) and medically relevant loci associated with Mendelian disorder (GJB2) and complex diseases. We also explored the shared and unique selection signatures of ethnically different but linguistically related Guangxi lineages and found some shared signals related to immune and malaria resistance. CONCLUSIONS: Our genetic analysis illuminated the language-related fine-scale genetic structure and provided robust genetic evidence to support the admixture hypothesis that can explain the pattern of observed genetic diversity and formation of GPH. This work presented one comprehensive analysis focused on the population history and demographical adaptative process, which provided genetic evidence for personal health management and disease risk prediction models from Guangxi people. Further large-scale whole-genome sequencing projects would provide the entire landscape of southern Chinese genomic diversity and their contributions to human health and disease traits.


Asunto(s)
Aclimatación , Genómica , Humanos , China , Alelos , Lenguaje
12.
Nano Lett ; 24(10): 3014-3020, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38427697

RESUMEN

Knowledge of the atomic structure of layer-stacked two-dimensional conjugated metal-organic frameworks (2D c-MOFs) is an essential prerequisite for establishing their structure-property correlation. For this, atomic resolution imaging is often the method of choice. In this paper, we gain a better understanding of the main properties contributing to the electron beam resilience and the achievable resolution in the high-resolution TEM images of 2D c-MOFs, which include chemical composition, density, and conductivity of the c-MOF structures. As a result, sub-angstrom resolution of 0.95 Å has been achieved for the most stable 2D c-MOF of the considered structures, Cu3(BHT) (BHT = benzenehexathiol), at an accelerating voltage of 80 kV in a spherical and chromatic aberration-corrected TEM. Complex damage mechanisms induced in Cu3(BHT) by the elastic interactions with the e-beam have been explained using detailed ab initio molecular dynamics calculations. Experimental and calculated knock-on damage thresholds are in good agreement.

13.
J Bacteriol ; 206(6): e0027323, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38717111

RESUMEN

Type VI secretion system (T6SS) is a potent weapon employed by various Pseudomonas species to compete with neighboring microorganisms for limited nutrients and ecological niches. However, the involvement of T6SS effectors in interbacterial competition within the phytopathogen Pseudomonas syringae remains unknown. In this study, we examined two T6SS clusters in a wild-type P. syringae MB03 and verified the involvement of one cluster, namely, T6SS-1, in interbacterial competition. Additionally, our results showed that two T6SS DNase effectors, specifically Tde1 and Tde4, effectively outcompeted antagonistic bacteria, with Tde4 playing a prominent role. Furthermore, we found several cognate immunity proteins, including Tde1ia, Tde1ib, and Tde4i, which are located in the downstream loci of their corresponding effector protein genes and worked synergistically to protect MB03 cells from self-intoxication. Moreover, expression of either Tde1 or C-terminus of Tde4 in Escherichia coli cells induced DNA degradation and changes in cell morphology. Thus, our results provide new insights into the role of the T6SS effectors of P. syringae in the interbacterial competition in the natural environment. IMPORTANCE: The phytopathogen Pseudomonas syringae employs an active type VI secretion system (T6SS) to outcompete other microorganisms in the natural environment, particularly during the epiphytic growth in the phyllosphere. By examining two T6SS clusters in P. syringae MB03, T6SS-1 is found to be effective in killing Escherichia coli cells. We highlight the excellent antibacterial effect of two T6SS DNase effectors, namely, Tde1 and Tde4. Both of them function as nuclease effectors, leading to DNA degradation and cell filamentation in prey cells, ultimately resulting in cell death. Our findings deepen our understanding of the T6SS effector repertoires used in P. syringae and will facilitate the development of effective antibacterial strategies.


Asunto(s)
Proteínas Bacterianas , Desoxirribonucleasas , Pseudomonas syringae , Sistemas de Secreción Tipo VI , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Pseudomonas syringae/enzimología , Sistemas de Secreción Tipo VI/metabolismo , Sistemas de Secreción Tipo VI/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Desoxirribonucleasas/metabolismo , Desoxirribonucleasas/genética , Regulación Bacteriana de la Expresión Génica , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos
14.
BMC Bioinformatics ; 25(1): 120, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515026

RESUMEN

BACKGROUND: Whole genome variants offer sufficient information for genetic prediction of human disease risk, and prediction of animal and plant breeding values. Many sophisticated statistical methods have been developed for enhancing the predictive ability. However, each method has its own advantages and disadvantages, so far, no one method can beat others. RESULTS: We herein propose an Ensemble Learning method for Prediction of Genetic Values (ELPGV), which assembles predictions from several basic methods such as GBLUP, BayesA, BayesB and BayesCπ, to produce more accurate predictions. We validated ELPGV with a variety of well-known datasets and a serious of simulated datasets. All revealed that ELPGV was able to significantly enhance the predictive ability than any basic methods, for instance, the comparison p-value of ELPGV over basic methods were varied from 4.853E-118 to 9.640E-20 for WTCCC dataset. CONCLUSIONS: ELPGV is able to integrate the merit of each method together to produce significantly higher predictive ability than any basic methods and it is simple to implement, fast to run, without using genotype data. is promising for wide application in genetic predictions.


Asunto(s)
Genoma , Fitomejoramiento , Animales , Humanos , Genotipo , Genómica , Aprendizaje Automático , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple , Teorema de Bayes
15.
BMC Genomics ; 25(1): 611, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890579

RESUMEN

BACKGROUND: Ancient northern East Asians (ANEA) from the Yellow River region, who pioneered millet cultivation, play a crucial role in understanding the origins of ethnolinguistically diverse populations in modern China and the entire landscape of deep genetic structure and variation discovery in modern East Asians. However, the direct links between ANEA and geographically proximate modern populations, as well as the biological adaptive processes involved, remain poorly understood. RESULTS: Here, we generated genome-wide SNP data for 264 individuals from geographically different Han populations in Shandong. An integrated genomic resource encompassing both modern and ancient East Asians was compiled to examine fine-scale population admixture scenarios and adaptive traits. The reconstruction of demographic history and hierarchical clustering patterns revealed that individuals from the Shandong Peninsula share a close genetic affinity with ANEA, indicating long-term genetic continuity and mobility in the lower Yellow River basin since the early Neolithic period. Biological adaptive signatures, including those related to immune and metabolic pathways, were identified through analyses of haplotype homozygosity and allele frequency spectra. These signatures are linked to complex traits such as height and body mass index, which may be associated with adaptations to cold environments, dietary practices, and pathogen exposure. Additionally, allele frequency trajectories over time and a haplotype network of two highly differentiated genes, ABCC11 and SLC10A1, were delineated. These genes, which are associated with axillary odor and bilirubin metabolism, respectively, illustrate how local adaptations can influence the diversification of traits in East Asians. CONCLUSIONS: Our findings provide a comprehensive genomic dataset that elucidates the fine-scale genetic history and evolutionary trajectory of natural selection signals and disease susceptibility in Han Chinese populations. This study serves as a paradigm for integrating spatiotemporally diverse ancient genomes in the era of population genomic medicine.


Asunto(s)
Genética de Población , Haplotipos , Polimorfismo de Nucleótido Simple , Humanos , China , Genómica , Evolución Molecular , Frecuencia de los Genes , Pueblo Asiatico/genética , Genoma Humano
16.
Anal Chem ; 96(11): 4612-4622, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38462905

RESUMEN

The iron nanozyme-based colorimetric method, which is widely applied for biosubstrate detection in in vitro diagnosis (IVD), faces some limitations. The optimal catalytic conditions of iron nanozymes necessitate a strong acidic environment, high temperature, and other restrictive factors; additionally, the colorimetric results are highly influenced by optical interferences. To address these challenges, iron nanozymes doped with various transition elements were efficiently prepared in this study, and notably, the manganese-modified one displayed a high catalytic activity owing to its electron transfer property. Furthermore, the introduction of lanthanide ions into the catalytic reactions, specifically the neodymium ion, significantly boosted the generation efficiency of hydroxyl radicals; importantly, this enhancement extended to a wide range of pH levels and temperatures, amplifying the detection signal. Moreover, the nanozyme's superparamagnetic characteristic was also employed to perform a logical optical and magnetic resonance dual-modality detection for substrates, effectively eliminating background optical interference and ensuring a reliable verification of the signal's authenticity. Based on this magnetic signal, the integration of natural glucose oxidase with the nanozyme resulted in a notable 61.5% increase in detection sensitivity, surpassing the capabilities of the traditional colorimetric approach. Consequently, the incorporation of lanthanide ions into the magnetic nanozyme enables the effective identification of physiological biomarkers through the dual-modality signal. This not only guarantees enhanced sensitivity but also demonstrates significant potential for future applications.


Asunto(s)
Elementos de la Serie de los Lantanoides , Imagen por Resonancia Magnética , Hierro , Espectroscopía de Resonancia Magnética , Iones/química , Colorimetría/métodos , Peróxido de Hidrógeno
17.
Cancer Immunol Immunother ; 73(5): 78, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38554152

RESUMEN

BACKGROUND: Lipid droplets (LDs) as major lipid storage organelles are recently reported to be innate immune hubs. Perilipin-3 (PLIN3) is indispensable for the formation and accumulation of LDs. Since cancer patients show dysregulated lipid metabolism, we aimed to elaborate the role of LDs-related PLIN3 in oral squamous cell carcinoma (OSCC). METHODS: PLIN3 expression patterns (n = 87), its immune-related landscape (n = 74) and association with B7-H2 (n = 51) were assessed by immunohistochemistry and flow cytometry. Real-time PCR, Western blot, Oil Red O assay, immunofluorescence, migration assay, spheroid-forming assay and flow cytometry were performed for function analysis. RESULTS: Spotted LDs-like PLIN3 staining was dominantly enriched in tumor cells than other cell types. PLIN3high tumor showed high proliferation index with metastasis potential, accompanied with less CD3+CD8+ T cells in peripheral blood and in situ tissue, conferring immunosuppressive microenvironment and shorter postoperative survival. Consistently, PLIN3 knockdown in tumor cells not only reduced LD deposits and tumor migration, but benefited for CD8+ T cells activation in co-culture system with decreased B7-H2. An OSCC subpopulation harbored PLIN3highB7-H2high tumor showed more T cells exhaustion, rendering higher risk of cancer-related death (95% CI 1.285-6.851). CONCLUSIONS: LDs marker PLIN3 may be a novel immunotherapeutic target in OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linfocitos T CD8-positivos/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Gotas Lipídicas/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Oncogenes , Perilipina-3/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Microambiente Tumoral
18.
BMC Plant Biol ; 24(1): 232, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561659

RESUMEN

BACKGROUND: Chrysanthemum, one of the four major cut flowers all over the world, is very sensitive to salinity during cultivation. DNA binding with one finger (DOF) transcription factors play important roles in biological processes in plants. The response mechanism of CmDOF18 from chrysanthemum to salt stress remains unclear. RESULTS: In this study, CmDOF18 was cloned from Chrysanthemum morifolium, and its expression was induced by salinity stress. The gene encodes a 291-amino acid protein with a typical DOF domain. CmDOF18 was localized to the nucleus in onion epidermal cells and showed transcriptional activation in yeast. CmDOF18 transgenic plants were generated to identify the role of this gene in resistance to salinity treatment. Chrysanthemum plants overexpressing CmDOF18 were more resistant to salinity stress than wild-type plants. Under salinity stress, the malondialdehyde content and leaf electrolyte conductivity in CmDOF18-overexpressing transgenic plants were lower than those in wild-type plants, while the proline content, chlorophyll content, superoxide dismutase activity and peroxidase activity were higher than those in wild-type plants. The opposite findings were observed in gene-silenced plants compared with wild-type plants. The gene expression levels of oxidoreductase increased in CmDOF18-overexpressing transgenic plants but decreased in CmDOF18-SRDX gene-silenced transgenic plants. CONCLUSION: In summary, we analyzed the function of CmDOF18 from chrysanthemum, which may regulate salinity stress in plants, possibly due to its role in the regulation of oxidoreductase.


Asunto(s)
Chrysanthemum , Oxidorreductasas , Oxidorreductasas/metabolismo , Tolerancia a la Sal/genética , Chrysanthemum/genética , Chrysanthemum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Saccharomyces cerevisiae/metabolismo , Salinidad , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
19.
BMC Plant Biol ; 24(1): 217, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532319

RESUMEN

Catalpa bungei is a precious timber species distributed in North China where drought often occurs. To clarify adaptive responses of C. bungei to partial- and full- root-zone drought under the influence of nitrogen forms, a two-factor experiment was conducted in which well-watered (WW), partial root-zone drought in horizontal direction (H-PRD) and in vertical direction (V-PRD), and full root-zone drought (FRD) were combined with nitrate-nitrogen (NN) and ammonium-nitrogen (AN) treatments. C. bungei responded to FRD by sharply closing stomata, decreasing gas exchange rate and increasing leaf instantaneous water use efficiency (WUEi). Under FRD condition, the growth of seedlings was severely inhibited and the effect of N forms was covered up by the drastic drought effect. In comparison, stomata conductance and gas exchanges were moderately inhibited by PRDs. WUEi in V-PRD treatment was superior to H-PRD due to the active stomata regulation resulting from a higher ABA level and active transcription of genes in abscisic acid (ABA) signaling pathway under V-PRD. Under both PRDs and FRD, nitrate benefited antioxidant defense, stomata regulation and leaf WUEi. Under V-PRD, WUEi in nitrate treatment was superior to that in ammonium treatment due to active stomata regulation by signaling network of nitric oxide (NO), Ca2+ and ABA. Under FRD, WUEi was higher in nitrate treatment due to the favoring photosynthetic efficiency resulting from active NO signal and antioxidant defense. The interactive effect of water and N forms was significant on wood xylem development. Superoxide dismutase (SOD) and catalase (CAT) largely contributes to stress tolerance and xylem development.


Asunto(s)
Nitratos , Nitrógeno , Nitrógeno/metabolismo , Sequías , Antioxidantes , Agua/metabolismo
20.
BMC Plant Biol ; 24(1): 289, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627624

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) play a crucial role in regulating gene expression vital for the growth and development of plants. Despite this, the role of lncRNAs in Chinese cabbage (Brassica rapa L. ssp. pekinensis) pollen development and male fertility remains poorly understood. RESULTS: In this study, we characterized a recessive genic male sterile mutant (366-2 S), where the delayed degradation of tapetum and the failure of tetrad separation primarily led to the inability to form single microspores, resulting in male sterility. To analyze the role of lncRNAs in pollen development, we conducted a comparative lncRNA sequencing using anthers from the male sterile mutant line (366-2 S) and the wild-type male fertile line (366-2 F). We identified 385 differentially expressed lncRNAs between the 366-2 F and 366-2 S lines, with 172 of them potentially associated with target genes. To further understand the alterations in mRNA expression and explore potential lncRNA-target genes (mRNAs), we performed comparative mRNA transcriptome analysis in the anthers of 366-2 S and 366-2 F at two stages. We identified 1,176 differentially expressed mRNAs. Remarkably, GO analysis revealed significant enrichment in five GO terms, most notably involving mRNAs annotated as pectinesterase and polygalacturonase, which play roles in cell wall degradation. The considerable downregulation of these genes might contribute to the delayed degradation of tapetum in 366-2 S. Furthermore, we identified 15 lncRNA-mRNA modules through Venn diagram analysis. Among them, MSTRG.9997-BraA04g004630.3 C (ß-1,3-glucanase) is associated with callose degradation and tetrad separation. Additionally, MSTRG.5212-BraA02g040020.3 C (pectinesterase) and MSTRG.13,532-BraA05g030320.3 C (pectinesterase) are associated with cell wall degradation of the tapetum, indicating that these three candidate lncRNA-mRNA modules potentially regulate pollen development. CONCLUSION: This study lays the foundation for understanding the roles of lncRNAs in pollen development and for elucidating their molecular mechanisms in regulating male sterility in Chinese cabbage.


Asunto(s)
Brassica rapa , Brassica , Infertilidad Masculina , ARN Largo no Codificante , Masculino , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Brassica/genética , Perfilación de la Expresión Génica/métodos , Transcriptoma , Fertilidad , Regulación de la Expresión Génica de las Plantas , Infertilidad Vegetal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA