Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(1): 149-159, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34908143

RESUMEN

Many bacteria use cyclic dimeric guanosine monophosphate (c-di-GMP) to control changes in lifestyle. The molecule, synthesized by proteins having diguanylate cyclase activity, is often a signal to transition from motile to sedentary behaviour. In Vibrio cholerae, c-di-GMP can exert its effects via the transcription factors VpsT and VpsR. Together, these proteins activate genes needed for V. cholerae to form biofilms. In this work, we have mapped the genome-wide distribution of VpsT in a search for further regulatory roles. We show that VpsT binds 23 loci and recognises a degenerate DNA palindrome having the consensus 5'-W-5R-4[CG]-3Y-2W-1W+1R+2[GC]+3Y+4W+5-3'. Most genes targeted by VpsT encode functions related to motility, biofilm formation, or c-di-GMP metabolism. Most notably, VpsT activates expression of the vpvABC operon that encodes a diguanylate cyclase. This creates a positive feedback loop needed to maintain intracellular levels of c-di-GMP. Mutation of the key VpsT binding site, upstream of vpvABC, severs the loop and c-di-GMP levels fall accordingly. Hence, as well as relaying the c-di-GMP signal, VpsT impacts c-di-GMP homeostasis.


Asunto(s)
Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo , Vibrio cholerae/genética , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Homeostasis , Operón , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Unión Proteica , Vibrio cholerae/metabolismo
2.
PLoS Genet ; 15(10): e1008362, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31658256

RESUMEN

Many bacteria use population density to control gene expression via quorum sensing. In Vibrio cholerae, quorum sensing coordinates virulence, biofilm formation, and DNA uptake by natural competence. The transcription factors AphA and HapR, expressed at low and high cell density respectively, play a key role. In particular, AphA triggers the entire virulence cascade upon host colonisation. In this work we have mapped genome-wide DNA binding by AphA. We show that AphA is versatile, exhibiting distinct modes of DNA binding and promoter regulation. Unexpectedly, whilst HapR is known to induce natural competence, we demonstrate that AphA also intervenes. Most notably, AphA is a direct repressor of tfoX, the master activator of competence. Hence, production of AphA markedly suppressed DNA uptake; an effect largely circumvented by ectopic expression of tfoX. Our observations suggest dual regulation of competence. At low cell density AphA is a master repressor whilst HapR activates the process at high cell density. Thus, we provide deep mechanistic insight into the role of AphA and highlight how V. cholerae utilises this regulator for diverse purposes.


Asunto(s)
Cólera/genética , Proteínas de Unión al ADN/genética , Transactivadores/genética , Vibrio cholerae/genética , Biopelículas/crecimiento & desarrollo , Cólera/microbiología , Regulación Bacteriana de la Expresión Génica/genética , Interacciones Huésped-Patógeno/genética , Humanos , Regiones Promotoras Genéticas/genética , Percepción de Quorum/genética , Factores de Transcripción/genética , Vibrio cholerae/patogenicidad
3.
J Biol Chem ; 286(49): 42545-42554, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-21990363

RESUMEN

The enzyme carnitine palmitoyltransferase 1 (CPT1), which is anchored in the outer mitochondrial membrane (OMM), controls the rate-limiting step in fatty acid ß-oxidation in mammalian tissues. It is inhibited by malonyl-CoA, the first intermediate of fatty acid synthesis, and it responds to OMM curvature and lipid characteristics, which reflect long term nutrient/hormone availability. Here, we show that the N-terminal regulatory domain (N) of CPT1A can adopt two complex amphiphilic structural states, termed Nα and Nß, that interchange in a switch-like manner in response to offered binding surface curvature. Structure-based site-directed mutageneses of native CPT1A suggest Nα to be inhibitory and Nß to be noninhibitory, with the relative Nα/Nß ratio setting the prevalent malonyl-CoA sensitivity of the enzyme. Based on the amphiphilic nature of N and molecular modeling, we propose malonyl-CoA sensitivity to be coupled to the properties of the OMM by Nα-OMM associations that alter the Nα/Nß ratio. For enzymes residing at the membrane-water interface, this constitutes an integrative regulatory mechanism of exceptional sophistication.


Asunto(s)
Carnitina O-Palmitoiltransferasa/química , Secuencia de Aminoácidos , Animales , Relación Dosis-Respuesta a Droga , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Regulación Enzimológica de la Expresión Génica , Humanos , Espectroscopía de Resonancia Magnética/métodos , Ratones , Micelas , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Conformación Molecular , Datos de Secuencia Molecular , Oxígeno/química , Estructura Terciaria de Proteína , Ratas , Homología de Secuencia de Aminoácido
4.
FASEB J ; 25(12): 4522-30, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21917985

RESUMEN

The purpose of this study was to investigate the sequence-dependence of oligomerization of transmembrane domain 2 (TM2) of rat carnitine palmitoyltransferase 1A (rCPT1A), to elucidate the role of this domain in the function of the full-length enzyme. Oligomerization of TM2 was studied qualitatively using complementary genetic assays that facilitate measurement of helix-helix interactions in the Escherichia coli inner membrane, and multiple quantitative biophysical methods. The effects of TM2-mutations on oligomerization and malonyl-CoA inhibition of the full-length enzyme (expressed in the yeast Pichia pastoris) were quantified. Changes designed to disrupt close-packing of the GXXXG(A) motifs reduced the oligomeric state of the corresponding TM2 peptides from hexamer to trimer (or lower), a reduction also observed on mutation of the TM2 sequence in the full-length enzyme. Disruption of these GXXXG(A) motifs had a parallel effect on the malonyl-CoA sensitivity of rCPT1A, reducing the IC(50) from 30.3 ± 5.0 to 3.0 ± 0.6 µM. For all measurements, wild-type rCPT1A was used as a control alongside various appropriate (e.g., molecular mass) standards. Our results suggest that sequence-determined, TM2-mediated oligomerization is likely to be involved in the modulation of malonyl-CoA inhibition of CPT1A in response to short- and long-term changes in protein-protein and protein-lipid interactions that occur in vivo.


Asunto(s)
Carnitina O-Palmitoiltransferasa/química , Secuencias de Aminoácidos , Animales , Secuencia de Bases , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Cartilla de ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Técnicas In Vitro , Malonil Coenzima A/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Pichia/genética , Pichia/metabolismo , Multimerización de Proteína , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA