Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Chemistry ; 30(20): e202304033, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38190370

RESUMEN

Supramolecular polymers offer tremendous potential to produce new "smart" materials, however, there remains a need to develop systems that are responsive to external stimuli. In this work, visible-light responsive hydrogen-bonded supramolecular polymers comprising photoresponsive supramolecular synthons (I-III) consisting of two hydrogen bonding motifs (HBMs) connected by a central ortho-tetrafluorinated azobenzene have been characterized by DOSY NMR and viscometry. Comparison of different hydrogen-bonding motifs reveals that assembly in the low and high concentration regimes is strongly influenced by the strength of association between the HBMs. I, Incorporating a triply hydrogen-bonded heterodimer, was found to exhibit concentration dependent switching between a monomeric pseudo-cycle and supramolecular oligomer through intermolecular hydrogen bonding interactions between the HBMs. II, Based on the same photoresponsive scaffold, and incorporating a quadruply hydrogen-bonded homodimer was found to form a supramolecular polymer which was dependent upon the ring-chain equilibrium and thus dependent upon both concentration and photochemical stimulus. Finally, III, incorporating a quadruply hydrogen-bonded heterodimer represents the first photoswitchable AB type hydrogen-bonded supramolecular polymer. Depending on the concentration and photostationary state, four different assemblies dominate for both monomers II and III, demonstrating the ability to control supramolecular assembly and physical properties triggered by light.

2.
Macromol Rapid Commun ; : e2400103, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597209

RESUMEN

N-carboxyanhydride ring-opening polymerization-induced self-assembly (NCA ROPISA) offers a convenient route for generating poly(amino acid)-based nanoparticles in a single step, crucially avoiding the need for post-polymerization self-assembly. Most examples of NCA ROPISA make use of a poly(ethylene glycol) (PEG) hydrophilic stabilizing block, however this non-biodegradable, oil-derived polymer may cause an immunological response in some individuals. Alternative water-soluble polymers are therefore highly sought. This work reports the synthesis of wholly poly(amino acid)-based nanoparticles, through the chain-extension of a polysarcosine macroinitiator with L-Phenylalanine-NCA (L-Phe-NCA) and Alanine-NCA (Ala-NCA), via aqueous NCA ROPISA. The resulting polymeric structures comprise of predominantly anisotropic, rod-like nanoparticles, with morphologies primarily influenced by the secondary structure of the hydrophobic poly(amino acid) that enables their formation.

3.
Soft Matter ; 19(15): 2737-2744, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36987660

RESUMEN

The breath figure (BF) method employs condensation droplets as dynamic templates for patterning polymer films. In the classical approach, dropwise condensation and film solidification are simultaneously induced through solvent evaporation, leading to empirically derived patterns with limited predictability of the final design. Here we use the temporally arrested BF methodology, controlling condensation and polymerisation independently to create diverse BF patterns with varied pore size, arrangement and distribution. External temperature control enables us to further investigate and exploit the inherent reversibility of the phase change process that governs the pattern formation. We modulate the level of subcooling and superheating to achieve subsequent regimes of condensation and evaporation, permitting in situ regulation of the droplet growth and shrinkage kinetics. The full reversibility of the phase change processes joined with active photopolymerisation in the current approach thus allows arresting of predictable BF kinetics at intermediate stages, thereby accessing patterns with varied pore size and spacing for unchanged material properties and environmental conditions. This simultaneous active control over both the kinetics of phase change and polymer solidification offers affordable routes for the fabrication of diverse predictable porous surfaces; manufacture of monolithic hierarchical BF patterns are ultimately facilitated through the advanced control of the BF assembly using the method presented here.

4.
Biomacromolecules ; 23(6): 2362-2373, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35549247

RESUMEN

Interaction between the anionic phosphodiester backbone of DNA/RNA and polycations can be exploited as a means of delivering genetic material for therapeutic and agrochemical applications. In this work, quaternized poly(2-(dimethylamino)ethyl methacrylate)-block-poly(N,N-dimethylacrylamide) (PQDMAEMA-b-PDMAm) double hydrophilic block copolymers (DHBCs) were synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization as nonviral delivery vehicles for double-stranded RNA. The assembly of DHBCs and dsRNA forms distinct polyplexes that were thoroughly characterized to establish a relationship between the length of the uncharged poly(N,N-dimethylacrylamide) (PDMA) block and the polyplex size, complexation efficiency, and colloidal stability. Dynamic light scattering reveals the formation of smaller polyplexes with increasing PDMA lengths, while gel electrophoresis confirms that these polyplexes require higher N/P ratio for full complexation. DHBC polyplexes exhibit enhanced stability in low ionic strength environments in comparison to homopolymer-based polyplexes. In vitro enzymatic degradation assays demonstrate that both homopolymer and DHBC polymers efficiently protect dsRNA from degradation by RNase A enzyme.


Asunto(s)
Polímeros , ARN Bicatenario , Interacciones Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Polimerizacion , Polímeros/química
5.
Angew Chem Int Ed Engl ; 60(21): 12032-12037, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33617018

RESUMEN

Aldehyde groups enable facile conjugation to proteins, enzymes, oligonucleotides or fluorescent dyes, yet there are no literature examples of water-soluble aldehyde-functional vinyl monomers. We report the synthesis of a new hydrophilic cis-diol-based methacrylic monomer (GEO5MA) by transesterification of isopropylideneglycerol penta(ethylene glycol) using methyl methacrylate followed by acetone deprotection via acid hydrolysis. The corresponding water-soluble aldehyde monomer, AGEO5MA, is prepared by aqueous periodate oxidation of GEO5MA at 22 °C. RAFT polymerization of GEO5MA yields the water-soluble homopolymer, PGEO5MA. Aqueous periodate oxidation of the terminal cis-diol units on PGEO5MA at 22 °C affords a water-soluble aldehyde-functional homopolymer (PAGEO5MA). Moreover, a library of hydrophilic statistical copolymers bearing cis-diol and aldehyde groups was prepared using sub-stoichiometric periodate/cis-diol molar ratios. The aldehyde groups on PAGEO5MA homopolymer were reacted in turn with three amino acids to demonstrate synthetic utility.

6.
J Biol Chem ; 294(6): 1763-1778, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30573684

RESUMEN

Combining DNA-damaging drugs with DNA checkpoint inhibitors is an emerging strategy to manage cancer. Checkpoint kinase 1 inhibitors (CHK1is) sensitize most cancer cell lines to DNA-damaging drugs and also elicit single-agent cytotoxicity in 15% of cell lines. Consequently, combination therapy may be effective in a broader patient population. Here, we characterized the molecular mechanism of sensitization to gemcitabine by the CHK1i MK8776. Brief gemcitabine incubation irreversibly inhibited ribonucleotide reductase, depleting dNTPs, resulting in durable S phase arrest. Addition of CHK1i 18 h after gemcitabine elicited cell division cycle 7 (CDC7)- and cyclin-dependent kinase 2 (CDK2)-dependent reactivation of the replicative helicase, but did not reinitiate DNA synthesis due to continued lack of dNTPs. Helicase reactivation generated extensive single-strand (ss)DNA that exceeded the protective capacity of the ssDNA-binding protein, replication protein A. The subsequent cleavage of unprotected ssDNA has been termed replication catastrophe. This mechanism did not occur with concurrent CHK1i plus gemcitabine treatment, providing support for delayed administration of CHK1i in patients. Alternative mechanisms of CHK1i-mediated sensitization to gemcitabine have been proposed, but their role was ruled out; these mechanisms include premature mitosis, inhibition of homologous recombination, and activation of double-strand break repair nuclease (MRE11). In contrast, single-agent activity of CHK1i was MRE11-dependent and was prevented by lower concentrations of a CDK2 inhibitor. Hence, both pathways require CDK2 but appear to depend on different CDK2 substrates. We conclude that a small-molecule inhibitor of CHK1 can elicit at least two distinct, context-dependent mechanisms of cytotoxicity in cancer cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Quinasa 2 Dependiente de la Ciclina/metabolismo , Replicación del ADN/efectos de los fármacos , Desoxicitidina/análogos & derivados , Proteínas Serina-Treonina Quinasas/metabolismo , Pirazoles/farmacología , Pirimidinas/farmacología , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa 2 Dependiente de la Ciclina/genética , ADN de Cadena Simple/biosíntesis , Desoxicitidina/farmacología , Humanos , Células PC-3 , Proteínas Serina-Treonina Quinasas/genética , Gemcitabina
8.
J Am Chem Soc ; 137(5): 1929-37, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25526525

RESUMEN

Small angle X-ray scattering (SAXS), electrospray ionization charge detection mass spectrometry (CD-MS), dynamic light scattering (DLS), and transmission electron microscopy (TEM) are used to characterize poly(glycerol monomethacrylate)55-poly(2-hydroxypropyl methacrylate)x (G55-Hx) vesicles prepared by polymerization-induced self-assembly (PISA) using a reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization formulation. A G55 chain transfer agent is utilized to prepare a series of G55-Hx diblock copolymers, where the mean degree of polymerization (DP) of the membrane-forming block (x) is varied from 200 to 2000. TEM confirms that vesicles with progressively thicker membranes are produced for x = 200-1000, while SAXS indicates a gradual reduction in mean aggregation number for higher x values, which is consistent with CD-MS studies. Both DLS and SAXS studies indicate minimal change in the overall vesicle diameter between x = 400 and 800. Fitting SAXS patterns to a vesicle model enables calculation of the membrane thickness, degree of hydration of the membrane, and the mean vesicle aggregation number. The membrane thickness increases at higher x values, hence the vesicle lumen must become smaller if the external vesicle dimensions remain constant. Geometric considerations indicate that this growth mechanism lowers the total vesicle interfacial area and hence reduces the free energy of the system. However, it also inevitably leads to gradual ingress of the encapsulated water molecules into the vesicle membrane, as confirmed by SAXS analysis. Ultimately, the highly plasticized membranes become insufficiently hydrophobic to stabilize the vesicle morphology when x exceeds 1000, thus this PISA growth mechanism ultimately leads to vesicle "death".

9.
Biomacromolecules ; 16(8): 2514-21, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-26168078

RESUMEN

Two strategies for introducing disulfide groups at the outer surface of RAFT-synthesized poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA, or Gx-Hy for brevity) diblock copolymer worms are investigated. The first approach involved statistical copolymerization of GMA with a small amount of disulfide dimethacrylate (DSDMA, or D) comonomer to afford a G54-D0.50 macromolecular chain transfer agent (macro-CTA); this synthesis was conducted in relatively dilute solution in order to ensure mainly intramolecular cyclization and hence the formation of linear chains. Alternatively, a new disulfide-based bifunctional RAFT agent (DSDB) was used to prepare a G45-S-S-G45 (or (G45-S)2) macro-CTA. A binary mixture of a non-functionalized G55 macro-CTA was utilized with each of these two disulfide-based macro-CTAs in turn for the RAFT aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA). By targeting a PHPMA DP of 130 and systematically varying the molar ratio of the two macro-CTAs, a series of disulfide-functionalized diblock copolymer worm gels were obtained. For both formulations, oscillatory rheology studies confirmed that higher disulfide contents led to stronger gels, presumably as a result of inter-worm covalent bond formation via disulfide/thiol exchange. Using the DSDB-based macro-CTA led to the strongest worm gels, and this formulation also proved to be more effective in suppressing the thermosensitive behavior that is observed for the nondisulfide-functionalized control worm gel. However, macroscopic precipitation occurred when the proportion of DSDB-based macro-CTA was increased to 50 mol %, whereas the DSDMA-based macro-CTA could be utilized at up to 80 mol %. Finally, the worm gel modulus could be reduced to that of a nondisulfide-containing worm gel by reductive cleavage of the inter-worm disulfide bonds using excess tris(2-carboxyethyl)phosphine (TCEP) to yield thiol groups. These new biomimetic worm gels are expected to exhibit enhanced muco-adhesion.


Asunto(s)
Disulfuros/química , Geles/química , Polímeros/química , Geles/síntesis química , Polímeros/síntesis química , Reología , Soluciones/química , Propiedades de Superficie , Temperatura , Agua/química
10.
Biomacromolecules ; 16(12): 3952-8, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26509930

RESUMEN

It is well-known that 3D in vitro cell cultures provide a much better model than 2D cell cultures for understanding the in vivo microenvironment of cells. However, significant technical challenges in handling and analyzing 3D cell cultures remain, which currently limits their widespread application. Herein, we demonstrate the application of wholly synthetic thermoresponsive block copolymer worms in sheet-based 3D cell culture. These worms form a soft, free-standing gel reversibly at 20-37 °C, which can be rapidly converted into a free-flowing dispersion of spheres on cooling to 5 °C. Functionalization of the worms with disulfide groups was found to be essential for ensuring sufficient mechanical stability of these hydrogels to enable long-term cell culture. These disulfide groups are conveniently introduced via statistical copolymerization of a disulfide-based dimethacrylate under conditions that favor intramolecular cyclization and subsequent thiol/disulfide exchange leads to the formation of reversible covalent bonds between adjacent worms within the gel. This new approach enables cells to be embedded within micrometer-thick slabs of gel with good viability, permits cell culture for at least 12 days, and facilitates recovery of viable cells from the gel simply by incubating the culture in buffer at 4 °C (thus, avoiding the enzymatic degradation required for cell harvesting when using commercial protein-based gels, such as Matrigel).


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Hidrogeles/química , Ácidos Polimetacrílicos/química , Técnicas de Cultivo de Célula/instrumentación , Línea Celular Tumoral , Supervivencia Celular , Colágeno/química , Disulfuros/química , Combinación de Medicamentos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Hidrogeles/farmacología , Laminina/química , Transición de Fase , Ácidos Polimetacrílicos/farmacología , Proteoglicanos/química , Temperatura
11.
Angew Chem Int Ed Engl ; 54(4): 1279-83, 2015 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-25418214

RESUMEN

A carboxylic acid based reversible additionfragmentation transfer (RAFT) agent is used to prepare gels composed of worm-like diblock copolymers using two non-ionic monomers, glycerol monomethacrylate (GMA) and 2-hydroxypropyl methacrylate (HPMA). Ionization of the carboxylic acid end-group on the PGMA stabilizer block induces a worm-to-sphere transition, which in turn causes immediate degelation. This morphological transition is fully reversible as determined by TEM and rheology studies and occurs because of a subtle change in the packing parameter for the copolymer chains. A control experiment where the methyl ester derivative of the RAFT agent is used to prepare the same diblock copolymer confirms that no pH-responsive behavior occurs in this case. This end-group ionization approach is important for the design of new pH-responsive copolymer nano-objects as, unlike polyacids or polybases, only a minimal amount of added base (or acid) is required to drive the morphological transition.

12.
J Am Chem Soc ; 136(29): 10174-85, 2014 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-24968281

RESUMEN

In this Perspective, we discuss the recent development of polymerization-induced self-assembly mediated by reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization. This approach has quickly become a powerful and versatile technique for the synthesis of a wide range of bespoke organic diblock copolymer nano-objects of controllable size, morphology, and surface functionality. Given its potential scalability, such environmentally-friendly formulations are expected to offer many potential applications, such as novel Pickering emulsifiers, efficient microencapsulation vehicles, and sterilizable thermo-responsive hydrogels for the cost-effective long-term storage of mammalian cells.

13.
J Am Chem Soc ; 136(3): 1023-33, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24400622

RESUMEN

A poly(ethylene glycol) (PEG) macromolecular chain transfer agent (macro-CTA) is prepared in high yield (>95%) with 97% dithiobenzoate chain-end functionality in a three-step synthesis starting from a monohydroxy PEG113 precursor. This PEG113-dithiobenzoate is then used for the reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA). Polymerizations conducted under optimized conditions at 50 °C led to high conversions as judged by (1)H NMR spectroscopy and relatively low diblock copolymer polydispersities (M(w)/M(n) < 1.25) as judged by GPC. The latter technique also indicated good blocking efficiencies, since there was minimal PEG113 macro-CTA contamination. Systematic variation of the mean degree of polymerization of the core-forming PHPMA block allowed PEG113-PHPMA(x) diblock copolymer spheres, worms, or vesicles to be prepared at up to 17.5% w/w solids, as judged by dynamic light scattering and transmission electron microscopy studies. Small-angle X-ray scattering (SAXS) analysis revealed that more exotic oligolamellar vesicles were observed at 20% w/w solids when targeting highly asymmetric diblock compositions. Detailed analysis of SAXS curves indicated that the mean number of membranes per oligolamellar vesicle is approximately three. A PEG113-PHPMA(x) phase diagram was constructed to enable the reproducible targeting of pure phases, as opposed to mixed morphologies (e.g., spheres plus worms or worms plus vesicles). This new RAFT PISA formulation is expected to be important for the rational and efficient synthesis of a wide range of biocompatible, thermo-responsive PEGylated diblock copolymer nano-objects for various biomedical applications.


Asunto(s)
Nanoestructuras/química , Polietilenglicoles/química , Polimerizacion , Agua/química , Metacrilatos/química , Dispersión del Ángulo Pequeño , Temperatura , Difracción de Rayos X
14.
FASEB J ; 27(11): 4455-65, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23921377

RESUMEN

The gram-negative anaerobe Porphyromonas gingivalis colonizes the gingival crevice and is etiologically associated with periodontal disease that can lead to alveolar bone damage and resorption, promoting tooth loss. Although susceptible to antibiotics, P. gingivalis can evade antibiotic killing by residing within gingival keratinocytes. This provides a reservoir of organisms that may recolonize the gingival crevice once antibiotic therapy is complete. Polymersomes are nanosized amphiphilic block copolymer vesicles that can encapsulate drugs. Cells internalize polymersomes by endocytosis into early endosomes, where they are disassembled by the low pH, causing intracellular release of their drug load. In this study, polymersomes were used as vehicles to deliver antibiotics in an attempt to kill intracellular P. gingivalis within monolayers of keratinocytes and organotypic oral mucosal models. Polymersome-encapsulated metronidazole or doxycycline, free metronidazole, or doxycycline, or polymersomes alone as controls, were used, and the number of surviving intracellular P. gingivalis was quantified after host cell lysis. Polymersome-encapsulated metronidazole or doxycycline significantly (P<0.05) reduced the number of intracellular P. gingivalis in both monolayer and organotypic cultures compared to free antibiotic or polymersome alone controls. Polymersomes are effective delivery vehicles for antibiotics that do not normally gain entry to host cells. This approach could be used to treat recurrent periodontitis or other diseases caused by intracellular-dwelling organisms.


Asunto(s)
Antibacterianos/administración & dosificación , Infecciones por Bacteroidaceae/tratamiento farmacológico , Enfermedades de las Encías/tratamiento farmacológico , Queratinocitos/microbiología , Nanocápsulas , Porphyromonas gingivalis/efectos de los fármacos , Antibacterianos/uso terapéutico , Células Cultivadas , Doxiciclina/administración & dosificación , Doxiciclina/uso terapéutico , Encía/microbiología , Encía/patología , Humanos , Metronidazol/administración & dosificación , Metronidazol/uso terapéutico , Nanocápsulas/química , Periodontitis/tratamiento farmacológico , Polímeros/química
15.
FASEB J ; 27(1): 98-108, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23033321

RESUMEN

There is an emerging need both in pharmacology and within the biomedical industry to develop new tools to target intracellular mechanisms. The efficient delivery of functionally active proteins within cells is potentially a powerful research strategy, especially through the use of antibodies. In this work, we report on a nanovector for the efficient encapsulation and delivery of antibodies into live cells with no significant loss of cell viability or any deleterious effect on cell metabolic activity. This delivery system is based on poly[2-(methacryloyloxy)ethyl phosphorylcholine]-block-[2-(diisopropylamino)ethyl methacrylate] (PMPC-PDPA), a pH-sensitive diblock copolymer that self-assembles to form nanometer-sized vesicles, also known as polymersomes, at physiological pH. Polymersomes can successfully deliver relatively high antibody payloads within different types of live cells. We demonstrate that these antibodies can target their respective epitope showing immunolabeling of γ-tubulin, actin, Golgi protein, and the transcription factor NF-κB in live cells. Finally, we demonstrate that intracellular delivery of antibodies can control specific subcellular events, as well as modulate cell activity and proinflammatory processes.


Asunto(s)
Anticuerpos/administración & dosificación , Fosforilcolina/análogos & derivados , Ácidos Polimetacrílicos/química , Animales , Células Cultivadas , Humanos , Ratones , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Células 3T3 NIH , Fosforilcolina/química , Fracciones Subcelulares/inmunología
16.
Pest Manag Sci ; 80(2): 669-677, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37759365

RESUMEN

BACKGROUND: Chemical insecticides are an important tool to control damaging pest infestations. However, lack of species specificity, the rise of resistance and the demand for biological alternatives with improved ecotoxicity profiles means that chemicals with new modes of action are required. RNA interference (RNAi)-based strategies using double-stranded RNA (dsRNA) as a species-specific bio-insecticide offer an exquisite solution that addresses these issues. Many species, such as the fruit pest Drosophila suzukii, do not exhibit RNAi when dsRNA is orally administered due to degradation by gut nucleases and slow cellular uptake pathways. Thus, delivery vehicles that protect and deliver dsRNA are highly desirable. RESULTS: In this work, we demonstrate the complexation of D. suzukii-specific dsRNA for degradation of vha26 mRNA with bespoke diblock copolymers. We study the ex vivo protection of dsRNA against enzymatic degradation by gut enzymes, which demonstrates the efficiency of this system. Flow cytometry then investigates the cellular uptake of Cy3-labelled dsRNA, showing a 10-fold increase in the mean fluorescence intensity of cells treated with polyplexes. The polymer/dsRNA polyplexes induced a significant 87% decrease in the odds of survival of D. suzukii larvae following oral feeding only when formed with a diblock copolymer containing a long neutral block length (1:2 cationic block/neutral block). However, there was no toxicity when fed to the closely related Drosophila melanogaster. CONCLUSION: We provide evidence that dsRNA complexation with diblock copolymers is a promising strategy for RNAi-based species-specific pest control, but optimisation of polymer composition is essential for RNAi success. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Insecticidas , Polímeros , Animales , Polímeros/metabolismo , Insecticidas/farmacología , ARN Bicatenario/genética , Drosophila melanogaster/genética , Interferencia de ARN
17.
J Am Chem Soc ; 135(39): 14863-70, 2013 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-24001153

RESUMEN

Diblock copolymer vesicles are tagged with pH-responsive Nile Blue-based labels and used as a new type of pH-responsive colorimetric/fluorescent biosensor for far-red and near-infrared imaging of live cells. The diblock copolymer vesicles described herein are based on poly(2-(methacryloyloxy)ethyl phosphorylcholine-block-2-(diisopropylamino)ethyl methacrylate) [PMPC-PDPA]: the biomimetic PMPC block is known to facilitate rapid cell uptake for a wide range of cell lines, while the PDPA block constitutes the pH-responsive component that enables facile vesicle self-assembly in aqueous solution. These biocompatible vesicles can be utilized to detect interstitial hypoxic/acidic regions in a tumor model via a pH-dependent colorimetric shift. In addition, they are also useful for selective intracellular staining of lysosomes and early endosomes via subtle changes in fluorescence emission. Such nanoparticles combine efficient cellular uptake with a pH-responsive Nile Blue dye label to produce a highly versatile dual capability probe. This is in marked contrast to small molecule dyes, which are usually poorly uptaken by cells, frequently exhibit cytotoxicity, and are characterized by intracellular distributions invariably dictated by their hydrophilic/hydrophobic balance.


Asunto(s)
Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/análisis , Imagen Óptica/métodos , Oxazinas/administración & dosificación , Oxazinas/análisis , Técnicas Biosensibles/métodos , Portadores de Fármacos/química , Humanos , Concentración de Iones de Hidrógeno , Rayos Infrarrojos , Nanopartículas/química , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Ácidos Polimetacrílicos/química , Esferoides Celulares , Células Tumorales Cultivadas
18.
Macromolecules ; 56(4): 1581-1591, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36874531

RESUMEN

The exploitation of computational techniques to predict the outcome of chemical reactions is becoming commonplace, enabling a reduction in the number of physical experiments required to optimize a reaction. Here, we adapt and combine models for polymerization kinetics and molar mass dispersity as a function of conversion for reversible addition fragmentation chain transfer (RAFT) solution polymerization, including the introduction of a novel expression accounting for termination. A flow reactor operating under isothermal conditions was used to experimentally validate the models for the RAFT polymerization of dimethyl acrylamide with an additional term to accommodate the effect of residence time distribution. Further validation is conducted in a batch reactor, where a previously recorded in situ temperature monitoring provides the ability to model the system under more representative batch conditions, accounting for slow heat transfer and the observed exotherm. The model also shows agreement with several literature examples of the RAFT polymerization of acrylamide and acrylate monomers in batch reactors. In principle, the model not only provides a tool for polymer chemists to estimate ideal conditions for a polymerization, but it can also automatically define the initial parameter space for exploration by computationally controlled reactor platforms provided a reliable estimation of rate constants is available. The model is compiled into an easily accessible application to enable simulation of RAFT polymerization of several monomers.

19.
Macromolecules ; 56(16): 6426-6435, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37637307

RESUMEN

In situ small-angle X-ray scattering (SAXS) is a powerful technique for characterizing block-copolymer nano-object formation during polymerization-induced self-assembly. To work effectively in situ, it requires high intensity X-rays which enable the short acquisition times required for real-time measurements. However, routine access to synchrotron X-ray sources is expensive and highly competitive. Flow reactors provide an opportunity to obtain temporal resolution by operating at a consistent flow rate. Here, we equip a flow-reactor with an X-ray transparent flow-cell at the outlet which facilitates the use of a low-flux laboratory SAXS instrument for in situ monitoring. The formation and morphological evolution of spherical block copolymer nano-objects was characterized during reversible addition fragmentation chain transfer polymerization of diacetone acrylamide in the presence of a series of poly(dimethylacrylamide) (PDMAm) macromolecular chain transfer agents with varying degrees of polymerization. SAXS analysis indicated that during the polymerization, highly solvated, loosely defined aggregates form after approximately 100 s, followed by expulsion of solvent to form well-defined spherical particles with PDAAm cores and PDMAm stabilizer chains, which then grow as the polymerization proceeds. Analysis also indicates that the aggregation number (Nagg) increases during the reaction, likely due to collisions between swollen, growing nanoparticles. In situ SAXS conducted on PISA syntheses using different PDMAm DPs indicated a varying conformation of the chains in the particle cores, from collapsed chains for PDMAm47 to extended chains for PDMAm143. At high conversion, the final Nagg decreased as a function of increasing PDMAm DP, indicating increased steric stabilization afforded by the longer chains which is reflected by a decrease in both core diameter (from SAXS) and hydrodynamic diameter (from DLS) for a constant core DP of 400.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA