Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Planta ; 259(1): 29, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38133691

RESUMEN

MAIN CONCLUSION: Different lupin species exhibited varied biomass, P allocation, and physiological responses to P-deprivation. White and yellow lupins had higher carboxylate exudation rates, while blue lupin showed the highest phosphatase activity. White lupin (Lupinus albus) can produce specialized root structures, called cluster roots, which are adapted to low-phosphorus (P) soil. Blue lupin (L. angustifolius) and yellow lupin (L. luteus), which are two close relatives of white lupin, do not produce cluster roots. This study characterized plant responses to nutrient limitation by analyzing biomass accumulation and P distribution, absorption kinetics and root exudation in white, blue, and yellow lupins. Plants were grown in hydroponic culture with (64 µM NaH2PO4) or without P for 31 days. Under P limitation, more biomass was allocated to roots to improve P absorption. Furthermore, the relative growth rate of blue lupin showed the strongest inhibition. Under + P conditions, the plant total-P contents of blue lupin and yellow lupin were higher than that of white lupin. To elucidate the responses of lupins via the perspective of absorption kinetics and secretion analysis, blue and yellow lupins were confirmed to have stronger affinity and absorption capacity for orthophosphate after P-deprivation cultivation, whereas white lupin and yellow lupin had greater ability to secrete organic acids. The exudation of blue lupin had higher acid phosphatase activity. This study elucidated that blue lupin was more sensitive to P-scarcity stress and yellow had the greater tolerance of P-deficient condition than either of the other two lupin species. The three lupin species have evolved different adaptation strategies to cope with P deficiency.


Asunto(s)
Lupinus , Fósforo Dietético , Fósforo , Fosfatos , Ácidos Carboxílicos , Raíces de Plantas
2.
J Exp Bot ; 72(2): 199-223, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33211873

RESUMEN

Inorganic phosphate (Pi) is an essential macronutrient required for many fundamental processes in plants, including photosynthesis and respiration, as well as nucleic acid, protein, and membrane phospholipid synthesis. The huge use of Pi-containing fertilizers in agriculture demonstrates that the soluble Pi levels of most soils are suboptimal for crop growth. This review explores recent advances concerning the understanding of adaptive metabolic processes that plants have evolved to alleviate the negative impact of nutritional Pi deficiency. Plant Pi starvation responses arise from complex signaling pathways that integrate altered gene expression with post-transcriptional and post-translational mechanisms. The resultant remodeling of the transcriptome, proteome, and metabolome enhances the efficiency of root Pi acquisition from the soil, as well as the use of assimilated Pi throughout the plant. We emphasize how the up-regulation of high-affinity Pi transporters and intra- and extracellular Pi scavenging and recycling enzymes, organic acid anion efflux, membrane remodeling, and the remarkable flexibility of plant metabolism and bioenergetics contribute to the survival of Pi-deficient plants. This research field is enabling the development of a broad range of innovative and promising strategies for engineering phosphorus-efficient crops. Such cultivars are urgently needed to reduce inputs of unsustainable and non-renewable Pi fertilizers for maximum agronomic benefit and long-term global food security and ecosystem preservation.


Asunto(s)
Ecosistema , Fósforo , Adaptación Fisiológica , Fertilizantes , Fosfatos , Raíces de Plantas
3.
Arch Microbiol ; 203(9): 5599-5611, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34455446

RESUMEN

Plants release various metabolites from roots and root exudates contribute to differences in stress tolerance among plant species. Plant and soil microbes have complex interactions that are affected by biotic and abiotic factors. The purpose of this study was to examine the differences in metabolites in root exudates of rice (Oryza sativa) cultivars and their correlation with bacterial populations in the rhizosphere. Two rice cultivars (O. sativa cv. Akamai and O. sativa cv. Koshihikari) were grown in soils fertilized with 0 g P kg-1 (- P) or 4.8 g P kg-1 (+ P). Root exudates and root-attached soil were collected at 13 and 20 days after transplanting (DAT) and their metabolites and bacterial community structure were determined. The exudation of proline, serine, threonine, valine and 4-coumarate were increased under low P conditions in both cultivars. There was a positive correlation between the concentration of pantothenate in root exudates and the representation of members of the genera Clostridium and Sporosarcina, which were negatively correlated with root dry weight. Gracilibacter, Opitutus, Pelotomaculum, Phenylobacterium and Oxobacter were positively correlated with root dry weight and presence of allantoin, 2-aminobtyrate and GlcNac. This study provides new information about the response of plants and rhizosphere soil bacteria to low P conditions.


Asunto(s)
Microbiota , Oryza , Exudados y Transudados , Raíces de Plantas , Rizosfera , Suelo
4.
Plant Cell Physiol ; 60(1): 107-115, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239977

RESUMEN

Under phosphorus (P)-deficient conditions, organic acid secretion from roots plays an important role in P mobilization from insoluble P in the soil. In this study, we characterized AtALMT3, a homolog of the Arabidopsis thaliana aluminum-activated malate transporter family gene. Among the 14 AtALMT family genes, only AtALMT3 was significantly up-regulated in P-deficient roots. AtALMT3 promoter::ß-glucuronidase is expressed in the epidermis in roots, especially in root hair cells. AtALMT3 protein was localized in the plasma membrane and in small vesicles. Fluorescence of AtALMT3::GFP was not observed on the vacuole membrane of protoplast after lysis, indicating that AtALMT3 localizes mainly in the plasma membrane. Compared with the wild-type (WT) line, malate exudation in the AtALMT3-knockdown line (atalmt3-1) and overexpression line (atalmt3-2) under P deficiency were, respectively, 37% and 126%. In contrast, no significant difference was found in citrate exudation among these lines. The complementation of the atalmt3-1 line with AtALMT3 recovered the malate exudation to the level of the WT. Taken together, these results suggest that AtALMT3 localized in root hair membranes is involved in malate efflux in response to P deficiency.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Malatos/metabolismo , Fósforo/deficiencia , Raíces de Plantas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Transporte Biológico , Ácido Cítrico/metabolismo , ADN Bacteriano/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Plant Cell Environ ; 41(7): 1483-1496, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29520969

RESUMEN

Orthophosphate (H2 PO4- , Pi) is an essential macronutrient integral to energy metabolism as well as a component of membrane lipids, nucleic acids, including ribosomal RNA, and therefore essential for protein synthesis. The Pi concentration in the solution of most soils worldwide is usually far too low for maximum growth of crops, including rice. This has prompted the massive use of inefficient, polluting, and nonrenewable phosphorus (P) fertilizers in agriculture. We urgently need alternative and more sustainable approaches to decrease agriculture's dependence on Pi fertilizers. These include manipulating crops by (a) enhancing the ability of their roots to acquire limiting Pi from the soil (i.e. increased P-acquisition efficiency) and/or (b) increasing the total biomass/yield produced per molecule of Pi acquired from the soil (i.e. increased P-use efficiency). Improved P-use efficiency may be achieved by producing high-yielding plants with lower P concentrations or by improving the remobilization of acquired P within the plant so as to maximize growth and biomass allocation to developing organs. Membrane lipid remodelling coupled with hydrolysis of RNA and smaller P-esters in senescing organs fuels P remobilization in rice, the world's most important cereal crop.


Asunto(s)
Oryza/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Fertilizantes , Raíces de Plantas/metabolismo
6.
Physiol Plant ; 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29412473

RESUMEN

Recycling of phosphorus (P) from P-containing metabolites is an adaptive strategy of plants to overcome soil P deficiency. This study was aimed at demonstrating differences in lipid remodelling between low-P-tolerant and -sensitive rice cultivars using lipidome profiling. The rice cultivars Akamai (low-P-tolerant) and Koshihikari (low-P-sensitive) were grown in a culture solution with [2 mg l-1 (+P)] or without (-P) phosphate for 21 and 28 days after transplantation. Upper and lower leaves were collected. Lipids were extracted from the leaves and their composition was analysed by liquid chromatography/mass spectrometry (LC-MS). Phospholipids, namely phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and phosphatidylinositol (PI), lysophosphatidylcholine (lysoPC), diacylglycerol (DAG), triacylglycerol (TAG) and glycolipids, namely sulfoquinovosyl diacylglycerol (SQDG), digalactosyldiacylglycerol (DGDG), monogalactosyldiacylglycerol (MGDG) and 1,2-diacyl-3-O-alpha-glucuronosyl glycerol (GlcADG), were detected. GlcADG level was higher in both cultivars grown in -P than in +P and the increase was larger in Akamai than in Koshihikari. DGDG, MGDG and SQDG levels were higher in Akamai grown in -P than in +P and the increase was larger in the upper leaves than in the lower leaves. PC, PE, PG and PI levels were lower in both cultivars grown in -P than in +P and the decrease was larger in the lower leaves than in the upper leaves and in Akamai than in Koshihikari. Akamai catabolised more phospholipids in older leaves and synthesised glycolipids in younger leaves. These results suggested that extensive phospholipid replacement with non-phosphorus glycolipids is a mechanism underlying low-P-tolerance in rice cultivars.

7.
Appl Microbiol Biotechnol ; 99(10): 4287-95, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25487892

RESUMEN

Cellobiose 2-epimerase (CE) catalyzes the reversible epimerization of cellobiose to 4-O-ß-D-glucopyranosyl-D-mannose. By using a PCR-based metagenomic approach, 71 ce-like gene fragments were obtained from wide-ranging environmental samples such as sheep rumen, soils, sugar beet extracts, and anaerobic sewage sludge. The frequency of isolation of the fragments similar to known sequences varied depending on the nature of the samples used. The ce-like genes appeared to be widely distributed in environmental bacteria belonging to the phyla Bacteroidetes, Chloroflexi, Dictyoglomi, Firmicutes, Proteobacteria, Spirochaetes, and Verrucomicrobia. The phylogenetic analysis suggested that the cluster of CE and CE-like proteins was functionally and evolutionarily separated from that of N-acetyl-D-glucosamine 2-epimerase (AGE) and AGE-like proteins. Two ce-like genes containing full-length ORFs, designated md1 and md2, were obtained by PCR and expressed in Escherichia coli. The recombinant mD1 and mD2 exhibited low K m values and high catalytic efficiencies (k cat/K m) for mannobiose compared with cellobiose, suggesting that they should be named mannobiose 2-epimerase, which is involved in a new mannan catabolic pathway we proposed.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/genética , Celobiosa/metabolismo , Metagenómica , Racemasas y Epimerasas/genética , Rumen/microbiología , Secuencia de Aminoácidos , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cinética , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Racemasas y Epimerasas/química , Racemasas y Epimerasas/metabolismo , Alineación de Secuencia , Ovinos , Microbiología del Suelo , Especificidad por Sustrato
8.
Arch Microbiol ; 196(1): 17-23, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24217874

RESUMEN

We have proposed a new mannan catabolic pathway in Bacteroides fragilis NCTC 9343 that involves a putative mannanase ManA in glycoside hydrolase family 26 (BF0771), a mannobiose and/or sugar transporter (BF0773), mannobiose 2-epimerase (BF0774), and mannosylglucose phosphorylase (BF0772). If this hypothesis is correct, ManA has to generate mannobiose from mannans as the major end product. In this study, the BF0771 gene from the B. fragilis genome was cloned and expressed in Escherichia coli cells. The expressed protein was found to produce mannobiose exclusively from mannans and initially from manno-oligosaccharides. Production of 4-O-ß-D-glucopyranosyl-D-mannose or 4-O-ß-D-mannopyranosyl-D-glucose from mannans was not detectable. The results indicate that this enzyme is a novel mannobiose-forming exo-mannanase, consistent with the new microbial mannan catabolic pathway we proposed.


Asunto(s)
Bacteroides fragilis/enzimología , Mananos/metabolismo , Manosidasas/genética , Manosidasas/metabolismo , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Activación Enzimática , Estabilidad de Enzimas , Escherichia coli/genética , Concentración de Iones de Hidrógeno , Mananos/biosíntesis , Manosidasas/aislamiento & purificación , Oligosacáridos/metabolismo , Proteínas Recombinantes/genética , Temperatura
9.
Plant Soil ; 496(1-2): 71-82, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510945

RESUMEN

Background and aims: Belowground interspecific plant facilitation is supposed to play a key role in enabling species co-existence in hyperdiverse ecosystems in extremely nutrient-poor, semi-arid habitats, such as Banksia woodlands in southwestern-Australia. Manganese (Mn) is readily mobilised by Banksia cluster root activity in most soils and accumulates in mature leaves of native Australian plant species without significant remobilisation during leaf senescence. We hypothesised that neighbouring shrubs are facilitated in terms of Mn uptake depending on distance to surrounding cluster root-forming Banksia trees. Methods: We mapped all Banksia trees and selected neighbouring shrubs within a study site in Western Australia. Soil samples were collected and analysed for physical properties and nutrient concentrations. To assesses the effect of Banksia tree proximity on leaf Mn concentrations [Mn] of non-cluster-rooted woody shrubs, samples of similarly aged leaves were taken. We used multiple linear models to test for factors affecting shrub leaf [Mn]. Results: None of the assessed soil parameters showed a significant correlation with shrub leaf Mn concentrations. However, we observed a significant positive effect of very close Banksia trees (2 m) on leaf [Mn] in one of the understorey shrubs. We found additional effects of elevation and shrub size. Conclusions: Leaf micronutrient concentrations of understorey shrubs were enhanced when growing within 2 m of tall Banksia trees. Our model predictions also indicate that belowground facilitation of Mn uptake was shrub size-dependent. We discuss this result in the light of plant water relations and shrub root system architecture. Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-023-06092-6.

10.
Microbes Environ ; 38(2)2023.
Artículo en Inglés | MEDLINE | ID: mdl-37225521

RESUMEN

Phosphorus (P) is often the limiting factor for plant growth because of its low mobility and availability in soils. Phosphate-solubilizing bacteria (PSB) have been shown to increase the availability of soil P fractions, thereby promoting plant growth. We herein investigated the effects of PSB on P availability in two important Chinese soil types: Lateritic red earths (La) and Cinnamon soils (Ci). We initially isolated 5 PSB strains and assessed their effects on soil P fractions. PSB mainly increased moderately labile P in La and labile P in Ci. We then selected the most promising PSB isolate (99% similarity with Enterobacter chuandaensis) and examined its effects on P accumulation in maize seedlings. The results obtained showed that plant P accumulation increased in response to a PSB inoculation in both soil types and the combination of the PSB inoculation and tricalcium phosphate fertilization in La significantly enhanced P accumulation in plant shoots. The present study demonstrated that the PSB isolates tested differed in their ability to mobilize P from distinct P fertilizers and that PSB isolates have potential as a valuable means of sustainably enhancing seedling growth in Chinese agricultural soils.


Asunto(s)
Fosfatos , Fósforo , Plantones , Cinnamomum zeylanicum , Zea mays , Suelo
11.
Plants (Basel) ; 12(6)2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36987053

RESUMEN

Plants have evolved various mechanisms for low P tolerance, one of which is changing their membrane lipid composition by remodeling phospholipids with non-phospholipids. The objective of this study was to investigate the remodeling of membrane lipids among rice cultivars under P deficiency. Rice (Oryza sativa L.) cultivars (Akamai, Kiyonishiki, Akitakomachi, Norin No. 1, Hiyadateine, Koshihikari, and Netaro) were grown in 0 (-P) and 8 (+P) mg P L-1 solution cultures. Shoots and roots were collected 5 and 10 days after transplanting (DAT) in solution culture and subjected to lipidome profiling using liquid chromatography-mass spectrometry. Phosphatidylcholine (PC)34, PC36, phosphatidylethanolamine (PE)34, PE36, phosphatidylglycerol (PG)34, phosphatidylinositol (PI)34 were the major phospholipids and digalactosyldiacylglycerol (DGDG)34, DGDG36, 1,2-diacyl-3-O-alpha-glucuronosylglycerol (GlcADG)34, GlcADG36, monogalactosyldiacylglycerol (MGDG)34, MGDG36, sulfoquinovosyldiacylglycerol (SQDG)34 and SQDG36 were the major non-phospholipids. Phospholipids were lower in the plants that were grown under -P conditions than that in the plants that were grown under +P for all cultivars at 5 and 10 DAT. The levels of non-phospholipids were higher in -P plants than that in +P plants of all cultivars at 5 and 10 DAT. Decomposition of phospholipids in roots at 5 DAT correlated with low P tolerance. These results suggest that rice cultivars remodel membrane lipids under P deficiency, and the ability of remodeling partly contributes to low P tolerance.

12.
Biochem Biophys Res Commun ; 408(4): 701-6, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21539815

RESUMEN

The consecutive genes BF0771-BF0774 in the genome of Bacteroides fragilis NCTC 9343 were found to constitute an operon. The functional analysis of BF0772 showed that the gene encoded a novel enzyme, mannosylglucose phosphorylase that catalyzes the reaction, 4-O-ß-d-mannopyranosyl-d-glucose+Pi→mannose-1-phosphate+glucose. Here we propose a new mannan catabolic pathway in the anaerobe, which involves 1,4-ß-mannanase (BF0771), a mannobiose and/or sugar transporter (BF0773), mannobiose 2-epimerase (BF0774), and mannosylglucose phosphorylase (BF0772), finally progressing to glycolysis. This pathway is distributed in microbes such as Bacteroides, Parabacteroides, Flavobacterium, and Cellvibrio.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteroides fragilis/enzimología , Disacáridos/metabolismo , Genes Bacterianos , Glucosa/metabolismo , Mananos/metabolismo , Fosforilasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Bacteroides fragilis/genética , Catálisis , Datos de Secuencia Molecular , Fosforilasas/genética , Transcripción Genética
13.
Plant Cell Physiol ; 51(8): 1255-64, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20624893

RESUMEN

Mineral nutrients taken up from the soil become incorporated into a variety of important compounds with structural and physiological roles in plants. We summarize how plant nutrients are linked to many metabolic pathways, plant hormones and other biological processes. We also focus on nutrient uptake, describing plant-microbe interactions, plant exudates, root architecture, transporters and their applications. Plants need to survive in soils with mineral concentrations that vary widely. Describing the relationships between nutrients and biological processes will enable us to understand the molecular basis for signaling, physiological damage and responses to mineral stresses.


Asunto(s)
Fenómenos Fisiológicos de las Plantas , Plantas/metabolismo , Plantas/microbiología , Redes y Vías Metabólicas , Micorrizas/fisiología , Nitrógeno/metabolismo , Fósforo/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Rhizobiaceae/fisiología , Transducción de Señal , Microbiología del Suelo , Azufre/metabolismo
14.
Biosci Biotechnol Biochem ; 73(2): 400-6, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19202279

RESUMEN

Cellobiose 2-epimerase (CE, EC 5.1.3.11) catalyzes the reversible epimerization of cellobiose to 4-O-beta-D-glucopyranosyl-D-mannose. In this study, we found a CE gene in the genome sequence of non-cellulolytic Bacteroides fragilis NCTC 9343. The recombinant enzyme, expressed in Escherichia coli cells, catalyzed a hydroxyl stereoisomerism at the C-2 positions of the reducing terminal glucose and at the mannose moiety of cello-oligosaccharides, lactose, beta-mannobiose (4-O-beta-D-mannopyranosyl-D-mannose), and globotriose [O-alpha-D-galactopyranosyl-(1-->4)-O-beta-D-galactopyranosyl-(1-->4)-D-glucose]. The CE from B. fragilis showed less than 40% identity to reported functional CEs. It exhibited 44-63% identities to N-acyl-D-glucosamine 2-epimerase-like hypothetical proteins of unknown function in bacterial genome sequences of the phyla Firmicutes, Bacteroidetes, Proteobacteria, Chloroflexi, and Verrucomicrobia. On the other hand, it showed less than 26% identity to functional N-acyl-D-glucosamine 2-epimerases. Based on the amino acid homology and phylogenetic positions of the functional epimerases, we emphasize that many genes for putative N-acyl-D-glucosamine 2-epimerases and related hypothetical proteins of unknown function reported to date in the bacterial genomes should be annotated as CE-like proteins or putative CEs.


Asunto(s)
Bacteroides fragilis/enzimología , Bacteroides fragilis/genética , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Celobiosa/metabolismo , Genes Bacterianos , Secuencia de Aminoácidos , Bacteroides fragilis/citología , Biocatálisis , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/aislamiento & purificación , Escherichia coli/genética , Expresión Génica , Concentración de Iones de Hidrógeno , Cinética , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Especificidad por Sustrato , Temperatura
15.
Biochem Biophys Res Commun ; 366(2): 414-9, 2008 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-18068670

RESUMEN

Peat contains various persistent compounds derived from plant materials. We isolated a novel (+)-catechin-degrading bacterium, Burkholderia sp. KTC-1 (KTC-1), as an example of a bacterium capable of degrading persistent aromatic compounds present in tropical peat. This bacterium was isolated by an enrichment technique and grew on (+)-catechin as the sole carbon source under acidic conditions. The reaction of a crude enzyme extract and a structural study of its products showed that (+)-catechin is biotransformed into taxifolin during the preliminary stages of its metabolism by KTC-1. HPLC analysis showed that this transformation occurs in two oxidation steps: 4-hydroxylation and dehydrogenation. Furthermore, both (+)-catechin 4-hydroxylanase and leucocyanidin 4-dehydrogenase were localized in the cytosol of KTC-1. This is the first report on biotransformation of (+)-catechin into taxifolin via leucocyanidin by an aerobic bacterium. We suggest that tropical peat could become a unique resource for microorganisms that degrade natural aromatic compounds.


Asunto(s)
Burkholderia/aislamiento & purificación , Burkholderia/metabolismo , Catequina/metabolismo , Quercetina/análogos & derivados , Microbiología del Suelo , Biotransformación , Burkholderia/clasificación , Flavonoles/metabolismo , Oxidación-Reducción , Quercetina/metabolismo , Especificidad de la Especie
16.
FEMS Microbiol Lett ; 287(1): 34-40, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18710396

RESUMEN

Cellobiose 2-epimerase (CE; EC 5.1.3.11) is known to catalyze the reversible epimerization of cellobiose to 4-O-beta-D-glucopyranosyl-D-mannose in Ruminococcus albus cells. Here, we report a CE in a ruminal strain of Eubacterium cellulosolvens for the first time. The nucleotide sequence of the CE had an ORF of 1218 bp (405 amino acids; 46 963.3 Da). The CE from E. cellulosolvens showed 44-54% identity to N-acyl-D-glucosamine 2-epimerase-like hypothetical proteins in the genomes of Coprococcus eutactus, Faecalibacterium prausnitzii, Clostridium phytofermentans, Caldicellulosiruptor saccharolyticus, and Eubacterium siraeum. Surprisingly, it exhibited only 46% identity to a CE from R. albus. The recombinant enzyme expressed in Escherichia coli was purified by two-step chromatography. The purified enzyme had a molecular mass of 46.7 kDa and exhibited optimal activity at around 35 degrees C and pH 7.0-8.5. In addition to cello-oligosaccharides, it converted lactose to epilactose (4-O-beta-D-galactopyranosyl-D-mannose).


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Celobiosa/metabolismo , Eubacterium/enzimología , Eubacterium/genética , Racemasas y Epimerasas/genética , Rumen/microbiología , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Secuencia de Bases , Clonación Molecular , Eubacterium/clasificación , Concentración de Iones de Hidrógeno , Cinética , Lactosa/metabolismo , Datos de Secuencia Molecular , Racemasas y Epimerasas/química , Racemasas y Epimerasas/aislamiento & purificación , Racemasas y Epimerasas/metabolismo , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Ovinos/microbiología , Especificidad por Sustrato , Temperatura
17.
J Environ Qual ; 34(6): 2157-66, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16275716

RESUMEN

White lupine (Lupinus albus L.) was used as a phosphorus (P)-efficient model plant to study the effects of elevated atmospheric CO(2) concentrations on (i) P acquisition, (ii) the related alterations in root development and rhizosphere chemistry, and (iii) the functional and structural diversity of rhizosphere microbial communities, on a P-deficient calcareous subsoil with and without soluble P fertilization. In both +P (80 mg P kg(-1)) and -P treatments (no added P), elevated CO(2) (800 micromol mol(-1)) increased shoot biomass production by 20 to 35% and accelerated the development of cluster roots, which exhibit important functions in chemical mobilization of sparingly soluble soil P sources. Accordingly, cluster root formation was stimulated in plants without P application by 140 and 60% for ambient and elevated CO(2) treatments, respectively. Intense accumulation of citrate and increased activities of acid and alkaline phosphatases, but also of chitinase, in the rhizosphere were mainly confined to later stages of cluster root development in -P treatments. Regardless of atmospheric CO(2) concentrations, there was no significant effect on accumulation of citrate or on selected enzyme activities of C, N, and P cycles in the rhizosphere of individual root clusters. Discriminant analysis of selected enzyme activities revealed that mainly phosphatase and chitinase contributed to the experimental variance (81.3%) of the data. Phosphatase and chitinase activities in the rhizosphere might be dominated by the secretion from cluster roots rather than by microbial activity. Alterations in rhizosphere bacterial communities analyzed by denaturing gradient gel electrophoresis (DGGE) were related with the intense changes in root secretory activity observed during cluster root development but not with elevated CO(2) concentrations.


Asunto(s)
Lupinus/metabolismo , Lupinus/microbiología , Micorrizas/metabolismo , Fósforo/metabolismo , Raíces de Plantas/microbiología , Atmósfera , Carbono/metabolismo , Dióxido de Carbono , Citratos/análisis , Citratos/metabolismo , Enzimas/metabolismo , Lupinus/crecimiento & desarrollo , Nitrógeno/metabolismo , Microbiología del Suelo
18.
Microbes Environ ; 28(1): 71-80, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23100024

RESUMEN

Phytate is the primary source of organic phosphorus, but it cannot be directly utilized by plants and is strongly adsorbed by the soil, reducing bioavailability. Composting is a process used to improve the bioavailability of phytate in organic wastes through degradation by microorganisms. In this study, we aimed to investigate the phytate-degrading ability of fungi and bacteria that inhabit sawdust compost and coffee residue compost, and their contribution to the composting process. In the plate assay, the fungi that formed clear zones around their colonies belonged to the genera Mucor, Penicillium, Galactomyces, Coniochaeta, Aspergillus, and Fusarium, while the bacteria belonged to the genera Pseudomonas, Enterobacter, Chitinophaga, and Rahnella. Eight fungal isolates (genera Mucor, Penicillium, Galactomyces, and Coniochaeta) and four bacterial isolates (genera Pseudomonas, Enterobacter, and Rahnella) were selected to evaluate phytase activity in their liquid culture and their ability to degrade phytate in organic materials composed of mushroom media residue and rice bran. The selected fungi degraded phytate in organic materials to varying degrees. Penicillium isolates showed the highest degradation ability and Coniochaeta isolate exhibited relatively high degradation ability. The clear zone diameters of these fungal isolates displayed significantly positive and negative correlations with inorganic and phytate phosphorus contents in the organic materials after incubation, respectively; however, none of the selected bacteria reduced phytate phosphorus in organic materials. It is therefore possible that fungi are major contributors to phytate degradation during composting.


Asunto(s)
Bacterias/metabolismo , Café/microbiología , Hongos/metabolismo , Ácido Fítico/metabolismo , Microbiología del Suelo , Suelo/análisis , Madera/microbiología , 6-Fitasa/genética , 6-Fitasa/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Fósforo/análisis , Fósforo/metabolismo , Ácido Fítico/química , Madera/metabolismo
19.
J Mol Biol ; 425(22): 4468-78, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23954514

RESUMEN

The crystal structure of a novel component of the mannan biodegradation system, 4-O-ß-D-mannosyl-D-glucose phosphorylase (MGP), was determined to a 1.68-Å resolution. The structure of the enzyme revealed a unique homohexameric structure, which was formed by using two helices attached to the N-terminus and C-terminus as a tab for sticking between subunits. The structures of MGP complexes with genuine substrates, 4-O-ß-D-mannosyl-D-glucose and phosphate, and the product D-mannose-1-phosphate were also determined. The complex structures revealed that the invariant residue Asp131, which is supposed to be the general acid/base, did not exist close to the glycosidic Glc-O4 atom, which should be protonated in the catalytic reaction. Also, no solvent molecule that might mediate a proton transfer from Asp131 was observed in the substrate complex structure, suggesting that the catalytic mechanism of MGP is different from those of known disaccharide phosphorylases.


Asunto(s)
Fosforilasas/química , Secuencia de Aminoácidos , Catálisis , Dominio Catalítico , Glucosa/química , Glucosa/metabolismo , Mananos/química , Mananos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilasas/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Alineación de Secuencia , Especificidad por Sustrato
20.
Microbes Environ ; 27(3): 226-33, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22353767

RESUMEN

Clarifying the identity and enzymatic activities of microorganisms associated with the decomposition of organic materials is expected to contribute to the evaluation and improvement of composting processes. In this study, we examined the cellulolytic and hemicellulolytic abilities of bacteria isolated from sawdust compost (SDC) and coffee residue compost (CRC). Cellulolytic bacteria were isolated using Dubos mineral salt agar containing azurine cross-linked (AZCL) HE-cellulose. Bacterial identification was performed based on the sequence analysis of 16S rRNA genes, and cellulase, xylanase, ß-glucanase, mannanase, and protease activities were characterized using insoluble AZCL-linked substrates. Eleven isolates were obtained from SDC and 10 isolates from CRC. DNA analysis indicated that the isolates from SDC and CRC belonged to the genera Streptomyces, Microbispora, and Paenibacillus, and the genera Streptomyces, Microbispora, and Cohnella, respectively. Microbispora was the most dominant genus in both compost types. All isolates, with the exception of two isolates lacking mannanase activity, showed cellulase, xylanase, ß-glucanase, and mannanase activities. Based on enzyme activities expressed as the ratio of hydrolysis zone diameter to colony diameter, it was suggested that the species of Microbispora (SDCB8, SDCB9) and Paenibacillus (SDCB10, SDCB11) in SDC and Microbispora (CRCB2, CRCB6) and Cohnella (CRCB9, CRCB10) in CRC contribute to efficient cellulolytic and hemicellulolytic processes during composting.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Celulosa/metabolismo , Microbiología Ambiental , Bacterias/genética , Bacterias/metabolismo , Técnicas Bacteriológicas , Análisis por Conglomerados , Café , Medios de Cultivo/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Microbiología Industrial , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA