Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell ; 167(1): 171-186.e15, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27641501

RESUMEN

While acute myeloid leukemia (AML) comprises many disparate genetic subtypes, one shared hallmark is the arrest of leukemic myeloblasts at an immature and self-renewing stage of development. Therapies that overcome differentiation arrest represent a powerful treatment strategy. We leveraged the observation that the majority of AML, despite their genetically heterogeneity, share in the expression of HoxA9, a gene normally downregulated during myeloid differentiation. Using a conditional HoxA9 model system, we performed a high-throughput phenotypic screen and defined compounds that overcame differentiation blockade. Target identification led to the unanticipated discovery that inhibition of the enzyme dihydroorotate dehydrogenase (DHODH) enables myeloid differentiation in human and mouse AML models. In vivo, DHODH inhibitors reduced leukemic cell burden, decreased levels of leukemia-initiating cells, and improved survival. These data demonstrate the role of DHODH as a metabolic regulator of differentiation and point to its inhibition as a strategy for overcoming differentiation blockade in AML.


Asunto(s)
Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Terapia Molecular Dirigida , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Animales , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Diferenciación Celular , Dihidroorotato Deshidrogenasa , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Ensayos Analíticos de Alto Rendimiento , Proteínas de Homeodominio/genética , Humanos , Leucemia Mieloide Aguda/genética , Ratones , Células Mieloides/patología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Pirimidinas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/aislamiento & purificación , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Cell ; 161(6): 1252-65, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26046436

RESUMEN

Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the NIH launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines but also highlight the need to innovate the science of therapeutic discovery.


Asunto(s)
Descubrimiento de Drogas , Bibliotecas de Moléculas Pequeñas , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , Humanos , National Institutes of Health (U.S.) , Estados Unidos
3.
Cell ; 154(5): 1151-1161, 2013 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-23993102

RESUMEN

The high rate of clinical response to protein-kinase-targeting drugs matched to cancer patients with specific genomic alterations has prompted efforts to use cancer cell line (CCL) profiling to identify additional biomarkers of small-molecule sensitivities. We have quantitatively measured the sensitivity of 242 genomically characterized CCLs to an Informer Set of 354 small molecules that target many nodes in cell circuitry, uncovering protein dependencies that: (1) associate with specific cancer-genomic alterations and (2) can be targeted by small molecules. We have created the Cancer Therapeutics Response Portal (http://www.broadinstitute.org/ctrp) to enable users to correlate genetic features to sensitivity in individual lineages and control for confounding factors of CCL profiling. We report a candidate dependency, associating activating mutations in the oncogene ß-catenin with sensitivity to the Bcl-2 family antagonist, navitoclax. The resource can be used to develop novel therapeutic hypotheses and to accelerate discovery of drugs matched to patients by their cancer genotype and lineage.


Asunto(s)
Bases de Datos Farmacéuticas , Descubrimiento de Drogas , Neoplasias/tratamiento farmacológico , Antineoplásicos/química , Línea Celular Tumoral , Humanos , Neoplasias/genética
4.
Nature ; 538(7625): 344-349, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27602946

RESUMEN

Antimalarial drugs have thus far been chiefly derived from two sources-natural products and synthetic drug-like compounds. Here we investigate whether antimalarial agents with novel mechanisms of action could be discovered using a diverse collection of synthetic compounds that have three-dimensional features reminiscent of natural products and are underrepresented in typical screening collections. We report the identification of such compounds with both previously reported and undescribed mechanisms of action, including a series of bicyclic azetidines that inhibit a new antimalarial target, phenylalanyl-tRNA synthetase. These molecules are curative in mice at a single, low dose and show activity against all parasite life stages in multiple in vivo efficacy models. Our findings identify bicyclic azetidines with the potential to both cure and prevent transmission of the disease as well as protect at-risk populations with a single oral dose, highlighting the strength of diversity-oriented synthesis in revealing promising therapeutic targets.


Asunto(s)
Antimaláricos/síntesis química , Antimaláricos/farmacología , Azetidinas/uso terapéutico , Descubrimiento de Drogas , Estadios del Ciclo de Vida/efectos de los fármacos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Animales , Antimaláricos/administración & dosificación , Antimaláricos/uso terapéutico , Compuestos de Azabiciclo/administración & dosificación , Compuestos de Azabiciclo/síntesis química , Compuestos de Azabiciclo/farmacología , Compuestos de Azabiciclo/uso terapéutico , Azetidinas/administración & dosificación , Azetidinas/efectos adversos , Azetidinas/farmacología , Citosol/enzimología , Modelos Animales de Enfermedad , Femenino , Hígado/efectos de los fármacos , Hígado/parasitología , Macaca mulatta/parasitología , Malaria Falciparum/prevención & control , Malaria Falciparum/transmisión , Masculino , Ratones , Fenilalanina-ARNt Ligasa/antagonistas & inhibidores , Compuestos de Fenilurea/administración & dosificación , Compuestos de Fenilurea/síntesis química , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Plasmodium falciparum/citología , Plasmodium falciparum/enzimología , Seguridad
5.
Nat Methods ; 14(9): 849-863, 2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28858338

RESUMEN

Image-based cell profiling is a high-throughput strategy for the quantification of phenotypic differences among a variety of cell populations. It paves the way to studying biological systems on a large scale by using chemical and genetic perturbations. The general workflow for this technology involves image acquisition with high-throughput microscopy systems and subsequent image processing and analysis. Here, we introduce the steps required to create high-quality image-based (i.e., morphological) profiles from a collection of microscopy images. We recommend techniques that have proven useful in each stage of the data analysis process, on the basis of the experience of 20 laboratories worldwide that are refining their image-based cell-profiling methodologies in pursuit of biological discovery. The recommended techniques cover alternatives that may suit various biological goals, experimental designs, and laboratories' preferences.


Asunto(s)
Rastreo Celular/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Interpretación de Imagen Asistida por Computador/métodos , Microscopía/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Análisis de Matrices Tisulares/métodos , Algoritmos , Animales , Interpretación Estadística de Datos , Humanos , Aprendizaje Automático
6.
J Am Chem Soc ; 141(26): 10225-10235, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31184885

RESUMEN

It is challenging to incorporate stereochemical diversity and topographic complexity into DNA-encoded libraries (DELs) because DEL syntheses cannot fully exploit the capabilities of modern synthetic organic chemistry. Here, we describe the design, construction, and validation of DOS-DEL-1, a library of 107 616 DNA-barcoded chiral 2,3-disubsituted azetidines and pyrrolidines. We used stereospecific C-H arylation chemistry to furnish complex scaffolds primed for DEL synthesis, and we developed an improved on-DNA Suzuki reaction to maximize library quality. We then studied both the structural diversity of the library and the physicochemical properties of individual compounds using Tanimoto multifusion similarity analysis, among other techniques. These analyses revealed not only that most DOS-DEL-1 members have "drug-like" properties, but also that the library more closely resembles compound collections derived from diversity synthesis than those from other sources (e.g., commercial vendors). Finally, we performed validation screens against horseradish peroxidase and carbonic anhydrase IX, and we developed a novel, Poisson-based statistical framework to analyze the results. A set of assay positives were successfully translated into potent carbonic anhydrase inhibitors (IC50 = 20.1-68.7 nM), which confirmed the success of the synthesis and screening procedures. These results establish a strategy to synthesize DELs with scaffold-based stereochemical diversity and complexity that does not require the development of novel DNA-compatible chemistry.


Asunto(s)
Código de Barras del ADN Taxonómico , ADN/química , Inhibidores Enzimáticos/química , Bibliotecas de Moléculas Pequeñas/química , Anhidrasa Carbónica IX/antagonistas & inhibidores , Anhidrasa Carbónica IX/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Peroxidasa de Rábano Silvestre/antagonistas & inhibidores , Peroxidasa de Rábano Silvestre/metabolismo , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Estereoisomerismo
7.
J Am Chem Soc ; 140(37): 11784-11790, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30133283

RESUMEN

Target- and phenotype-agnostic assessments of biological activity have emerged as viable strategies for prioritizing scaffolds, structural features, and synthetic pathways in screening sets, with the goal of increasing performance diversity. Here, we describe the synthesis of a small library of functionalized stereoisomeric azetidines and its biological annotation by "cell painting," a multiplexed, high-content imaging assay capable of measuring many hundreds of compound-induced changes in cell morphology in a quantitative and unbiased fashion. Using this approach, we systematically compare the degrees to which a core scaffold's biological activity, inferred from its effects on cell morphology, is affected by variations in stereochemistry and appendages. We show that stereoisomerism and appendage diversification can produce effects of similar magnitude, and that the concurrent use of these strategies results in a broader sampling of biological activity.


Asunto(s)
Azetidinas/química , Bibliotecas de Moléculas Pequeñas/química , Azetidinas/síntesis química , Línea Celular Tumoral , Humanos , Conformación Molecular , Imagen Óptica , Bibliotecas de Moléculas Pequeñas/síntesis química , Estereoisomerismo
8.
Proc Natl Acad Sci U S A ; 111(30): 10911-6, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-25024206

RESUMEN

High-throughput screening has become a mainstay of small-molecule probe and early drug discovery. The question of how to build and evolve efficient screening collections systematically for cell-based and biochemical screening is still unresolved. It is often assumed that chemical structure diversity leads to diverse biological performance of a library. Here, we confirm earlier results showing that this inference is not always valid and suggest instead using biological measurement diversity derived from multiplexed profiling in the construction of libraries with diverse assay performance patterns for cell-based screens. Rather than using results from tens or hundreds of completed assays, which is resource intensive and not easily extensible, we use high-dimensional image-based cell morphology and gene expression profiles. We piloted this approach using over 30,000 compounds. We show that small-molecule profiling can be used to select compound sets with high rates of activity and diverse biological performance.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Línea Celular Tumoral , Humanos
9.
J Am Chem Soc ; 138(28): 8920-7, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27398798

RESUMEN

Organic chemists are able to synthesize molecules in greater number and chemical complexity than ever before. Yet, a majority of these compounds go untested in biological systems, and those that do are often tested long after the chemist can incorporate the results into synthetic planning. We propose the use of high-dimensional "multiplex" assays, which are capable of measuring thousands of cellular features in one experiment, to annotate rapidly and inexpensively the biological activities of newly synthesized compounds. This readily accessible and inexpensive "real-time" profiling method can be used in a prospective manner to facilitate, for example, the efficient construction of performance-diverse small-molecule libraries that are enriched in bioactives. Here, we demonstrate this concept by synthesizing ten triads of constitutionally isomeric compounds via complexity-generating photochemical and thermal rearrangements and measuring compound-induced changes in cellular morphology via an imaging-based "cell painting" assay. Our results indicate that real-time biological annotation can inform optimization efforts and library syntheses by illuminating trends relating to biological activity that would be difficult to predict if only chemical structure were considered. We anticipate that probe and drug discovery will benefit from the use of optimization efforts and libraries that implement this approach.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Bibliotecas de Moléculas Pequeñas/química , Técnicas de Química Sintética , Isomerismo , Procesos Fotoquímicos , Bibliotecas de Moléculas Pequeñas/síntesis química , Factores de Tiempo
10.
bioRxiv ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38746359

RESUMEN

Ferroptosis is a cell death mechanism that has attracted significant attention as a potential basis for the development of new cancer therapies. Validation of ferroptosis biology in species commonly used in translation and pre-clinical development is a necessary foundation for enabling the advancement of such ferroptosis modulating drugs. Here, we demonstrate that canine cancer cells exhibit sensitivity to a wide range of ferroptosis-inducing perturbations in a manner indistinguishable from human cancer cells, and recapitulate characteristic patterns of ferroptotic response across tumor types seen in the human setting. The foundation provided herein establishes the dog as a relevant efficacy and toxicology model for ferroptosis and creates new opportunities to leverage the canine comparative oncology paradigm to accelerate the development of ferroptosis-inducing drugs for human cancer patients.

11.
Nat Commun ; 14(1): 1933, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024492

RESUMEN

Identifying the spectrum of genes required for cancer cell survival can reveal essential cancer circuitry and therapeutic targets, but such a map remains incomplete for many cancer types. We apply genome-scale CRISPR-Cas9 loss-of-function screens to map the landscape of selectively essential genes in chordoma, a bone cancer with few validated targets. This approach confirms a known chordoma dependency, TBXT (T; brachyury), and identifies a range of additional dependencies, including PTPN11, ADAR, PRKRA, LUC7L2, SRRM2, SLC2A1, SLC7A5, FANCM, and THAP1. CDK6, SOX9, and EGFR, genes previously implicated in chordoma biology, are also recovered. We find genomic and transcriptomic features that predict specific dependencies, including interferon-stimulated gene expression, which correlates with ADAR dependence and is elevated in chordoma. Validating the therapeutic relevance of dependencies, small-molecule inhibitors of SHP2, encoded by PTPN11, have potent preclinical efficacy against chordoma. Our results generate an emerging map of chordoma dependencies to enable biological and therapeutic hypotheses.


Asunto(s)
Neoplasias Óseas , Cordoma , Humanos , Cordoma/genética , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Genes Esenciales , Perfilación de la Expresión Génica , Transcriptoma , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , ADN Helicasas/metabolismo
12.
Nat Commun ; 14(1): 1364, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914634

RESUMEN

Robust, generalizable approaches to identify compounds efficiently with undesirable mechanisms of action in complex cellular assays remain elusive. Such a process would be useful for hit triage during high-throughput screening and, ultimately, predictive toxicology during drug development. Here we generate cell painting and cellular health profiles for 218 prototypical cytotoxic and nuisance compounds in U-2 OS cells in a concentration-response format. A diversity of compounds that cause cellular damage produces bioactive cell painting morphologies, including cytoskeletal poisons, genotoxins, nonspecific electrophiles, and redox-active compounds. Further, we show that lower quality lysine acetyltransferase inhibitors and nonspecific electrophiles can be distinguished from more selective counterparts. We propose that the purposeful inclusion of cytotoxic and nuisance reference compounds such as those profiled in this resource will help with assay optimization and compound prioritization in complex cellular assays like cell painting.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Oxidación-Reducción
13.
J Chem Inf Model ; 52(4): 935-42, 2012 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-22436016

RESUMEN

The transfer of SAR information from one analog series to another is a difficult, yet highly attractive task in medicinal chemistry. At present, the evaluation of SAR transfer potential from a data mining perspective is still in its infancy. Only recently, a first computational approach has been introduced to evaluate SAR transfer events. Here, a substructure relationship-based molecular network representation has been used as a starting point to systematically identify SAR transfer series in large compound data sets. For this purpose, a methodology is introduced that consists of two stages. For graph mining, an algorithm has been designed that extracts all parallel series from compound data sets. A parallel series is formed by two series of analogs with different core structures but pairwise corresponding substitution patterns. The SAR transfer potential of identified parallel series is then evaluated using a scoring function that emphasizes corresponding potency progression over many analog pairs and large potency ranges. The substructure relationship-based molecular network in combination with the graph mining algorithm currently represents the only generally applicable approach to systematically detect SAR transfer events in large compound data sets. The combined approach has been evaluated on a large number of compound data sets and shown to systematically identify SAR transfer series.


Asunto(s)
Algoritmos , Antitrombinas/química , Minería de Datos , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Trombina/química , Química Farmacéutica , Bases de Datos de Compuestos Químicos , Diseño de Fármacos , Descubrimiento de Drogas , Humanos , Unión Proteica , Proyectos de Investigación , Trombina/antagonistas & inhibidores
14.
J Chem Inf Model ; 51(4): 837-42, 2011 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-21438544

RESUMEN

It is well appreciated that the results of ligand-based virtual screening (LBVS) are much influenced by methodological details, given the generally strong compound class dependence of LBVS methods. It is less well understood to what extent structure-activity relationship (SAR) characteristics might influence the outcome of LBVS. We have assessed the hypothesis that the success of prospective LBVS depends on the SAR tolerance of screening targets, in addition to methodological aspects. In this context, SAR tolerance is rationalized as the ability of a target protein to specifically interact with series of structurally diverse active compounds. In compound data sets, SAR tolerance articulates itself as SAR continuity, i.e., the presence of structurally diverse compounds having similar potency. In order to analyze the role of SAR tolerance for LBVS, activity landscape representations of compounds active against 16 different target proteins were generated for which successful LBVS applications were reported. In all instances, the activity landscapes of known active compounds contained multiple regions of local SAR continuity. When analyzing the location of newly identified LBVS hits and their SAR environments, we found that these hits almost exclusively mapped to regions of distinct local SAR continuity. Taken together, these findings indicate the presence of a close link between SAR tolerance at the target level, SAR continuity at the ligand level, and the probability of LBVS success.


Asunto(s)
Biología Computacional/métodos , Evaluación Preclínica de Medicamentos/métodos , Relación Estructura-Actividad , Gráficos por Computador , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta , Bibliotecas Digitales , Ligandos , Receptores Acoplados a Proteínas G/antagonistas & inhibidores
15.
J Chem Inf Model ; 51(2): 258-66, 2011 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-21275393

RESUMEN

An activity landscape model of a compound data set can be rationalized as a graphical representation that integrates molecular similarity and potency relationships. Activity landscape representations of different design are utilized to aid in the analysis of structure-activity relationships and the selection of informative compounds. Activity landscape models reported thus far focus on a single target (i.e., a single biological activity) or at most two targets, giving rise to selectivity landscapes. For compounds active against more than two targets, landscapes representing multitarget activities are difficult to conceptualize and have not yet been reported. Herein, we present a first activity landscape design that integrates compound potency relationships across multiple targets in a formally consistent manner. These multitarget activity landscapes are based on a general activity cliff classification scheme and are visualized in graph representations, where activity cliffs are represented as edges. Furthermore, the contributions of individual compounds to structure-activity relationship discontinuity across multiple targets are monitored. The methodology has been applied to derive multitarget activity landscapes for compound data sets active against different target families. The resulting landscapes identify single-, dual-, and triple-target activity cliffs and reveal the presence of hierarchical cliff distributions. From these multitarget activity landscapes, compounds forming complex activity cliffs can be readily selected.


Asunto(s)
Gráficos por Computador , Minería de Datos/métodos , Descubrimiento de Drogas , Relación Estructura-Actividad
16.
Clin Transl Sci ; 14(5): 1719-1724, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33742785

RESUMEN

"Knowledge graphs" (KGs) have become a common approach for representing biomedical knowledge. In a KG, multiple biomedical data sets can be linked together as a graph representation, with nodes representing entities, such as "chemical substance" or "genes," and edges representing predicates, such as "causes" or "treats." Reasoning and inference algorithms can then be applied to the KG and used to generate new knowledge. We developed three KG-based question-answering systems as part of the Biomedical Data Translator program. These systems are typically tested and evaluated using traditional software engineering tools and approaches. In this study, we explored a team-based approach to test and evaluate the prototype "Translator Reasoners" through the application of Medical College Admission Test (MCAT) questions. Specifically, we describe three "hackathons," in which the developers of each of the three systems worked together with a moderator to determine whether the applications could be used to solve MCAT questions. The results demonstrate progressive improvement in system performance, with 0% (0/5) correct answers during the first hackathon, 75% (3/4) correct during the second hackathon, and 100% (5/5) correct during the final hackathon. We discuss the technical and sociologic lessons learned and conclude that MCAT questions can be applied successfully in the context of moderated hackathons to test and evaluate prototype KG-based question-answering systems, identify gaps in current capabilities, and improve performance. Finally, we highlight several published clinical and translational science applications of the Translator Reasoners.


Asunto(s)
Reconocimiento de Normas Patrones Automatizadas/métodos , Ciencia Traslacional Biomédica/métodos , Algoritmos , Prueba de Admisión Académica/estadística & datos numéricos , Conjuntos de Datos como Asunto , Humanos
17.
Cell Rep ; 37(6): 109967, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34758323

RESUMEN

Stem and progenitor cells have the capacity to balance self-renewal and differentiation. Hematopoietic myeloid progenitors replenish more than 25 billion terminally differentiated neutrophils every day under homeostatic conditions and can increase this output in response to stress or infection. At what point along the spectrum of maturation do progenitors lose capacity for self-renewal and become irreversibly committed to differentiation? Using a system of conditional myeloid development that can be toggled between self-renewal and differentiation, we interrogate determinants of this "point of no return" in differentiation commitment. Irreversible commitment is due primarily to loss of open regulatory site access and disruption of a positive feedback transcription factor activation loop. Restoration of the transcription factor feedback loop extends the window of cell plasticity and alters the point of no return. These findings demonstrate how the chromatin state enforces and perpetuates cell fate and identify potential avenues for manipulating cell identity.


Asunto(s)
Médula Ósea/fisiología , Linaje de la Célula , Cromatina/genética , Hematopoyesis , Células Madre Hematopoyéticas/citología , Células Mieloides/citología , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Cromatina/metabolismo , Femenino , Perfilación de la Expresión Génica , Ratones , Factores de Transcripción/genética
18.
Cell Rep Med ; 2(1): 100188, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33521702

RESUMEN

Chordomas are rare spinal tumors addicted to expression of the developmental transcription factor brachyury. In chordomas, brachyury is super-enhancer associated and preferentially downregulated by pharmacologic transcriptional CDK inhibition, leading to cell death. To understand the underlying basis of this sensitivity, we dissect the brachyury transcription regulatory network and compare the consequences of brachyury degradation with transcriptional CDK inhibition. Brachyury defines the chordoma super-enhancer landscape and autoregulates through binding its super-enhancer, and its locus forms a transcriptional condensate. Transcriptional CDK inhibition and brachyury degradation disrupt brachyury autoregulation, leading to loss of its transcriptional condensate and transcriptional program. Compared with transcriptional CDK inhibition, which globally downregulates transcription, leading to cell death, brachyury degradation is much more selective, inducing senescence and sensitizing cells to anti-apoptotic inhibition. These data suggest that brachyury downregulation is a core tenet of transcriptional CDK inhibition and motivates developing strategies to target brachyury and its autoregulatory feedback loop.


Asunto(s)
Biomarcadores de Tumor/genética , Cordoma/genética , Quinasas Ciclina-Dependientes/genética , Proteínas Fetales/genética , Proteínas de Neoplasias/genética , Neoplasias de la Columna Vertebral/genética , Proteínas de Dominio T Box/genética , Secuencia de Bases , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Cordoma/metabolismo , Cordoma/patología , Quinasas Ciclina-Dependientes/metabolismo , Proteínas Fetales/metabolismo , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Células HEK293 , Histonas/genética , Histonas/metabolismo , Humanos , Queratina-18/genética , Queratina-18/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas de Neoplasias/metabolismo , Proteolisis , Transducción de Señal , Neoplasias de la Columna Vertebral/metabolismo , Neoplasias de la Columna Vertebral/patología , Proteínas de Dominio T Box/metabolismo
19.
J Chem Inf Model ; 50(8): 1395-409, 2010 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-20726598

RESUMEN

An intuitive and generally applicable analysis method, termed similarity-potency tree (SPT), is introduced to mine structure-activity relationship (SAR) information in compound data sets of any source. Only compound potency values and nearest-neighbor similarity relationships are considered. Rather than analyzing a data set as a whole, in part overlapping compound neighborhoods are systematically generated and represented as SPTs. This local analysis scheme simplifies the evaluation of SAR information and SPTs of high SAR information content are easily identified. By inspecting only a limited number of compound neighborhoods, it is also straightforward to determine whether data sets contain only little or no interpretable SAR information. Interactive analysis of SPTs is facilitated by reading the trees in two directions, which makes it possible to extract SAR rules, if available, in a consistent manner. The simplicity and interpretability of the data structure and the ease of calculation are characteristic features of this approach. We apply the methodology to high-throughput screening and lead optimization data sets, compare the approach to standard clustering techniques, illustrate how SAR rules are derived, and provide some practical guidance how to best utilize the methodology. The SPT program is made freely available to the scientific community.


Asunto(s)
Diseño de Fármacos , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Química Farmacéutica/métodos , Análisis por Conglomerados , Bibliotecas de Moléculas Pequeñas/farmacología
20.
J Chem Inf Model ; 50(1): 68-78, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20053000

RESUMEN

We introduce SARANEA, an open-source Java application for interactive exploration of structure-activity relationship (SAR) and structure-selectivity relationship (SSR) information in compound sets of any source. SARANEA integrates various SAR and SSR analysis functions and utilizes a network-like similarity graph data structure for visualization. The program enables the systematic detection of activity and selectivity cliffs and corresponding key compounds across multiple targets. Advanced SAR analysis functions implemented in SARANEA include, among others, layered chemical neighborhood graphs, cliff indices, selectivity trees, editing functions for molecular networks and pathways, bioactivity summaries of key compounds, and markers for bioactive compounds having potential side effects. We report the application of SARANEA to identify SAR and SSR determinants in different sets of serine protease inhibitors. It is found that key compounds can influence SARs and SSRs in rather different ways. Such compounds and their SAR/SSR characteristics can be systematically identified and explored using SARANEA. The program and source code are made freely available under the GNU General Public License.


Asunto(s)
Minería de Datos/métodos , Bases de Datos Factuales , Programas Informáticos , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/efectos adversos , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología , Programas Informáticos/economía , Relación Estructura-Actividad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA