Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Exp Biol ; 226(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36808489

RESUMEN

Climate warming could challenge the ability of endotherms to thermoregulate and maintain normal body temperature (Tb), but the effects of warming summer temperatures on activity and thermoregulatory physiology in many small mammals remain poorly understood. We examined this issue in deer mice (Peromyscus maniculatus), an active nocturnal species. Mice were exposed in the lab to simulated seasonal warming, in which an environmentally realistic diel cycle of ambient temperature (Ta) was gradually warmed from spring conditions to summer conditions (controls were maintained in spring conditions). Activity (voluntary wheel running) and Tb (implanted bio-loggers) were measured throughout, and indices of thermoregulatory physiology (thermoneutral zone, thermogenic capacity) were assessed after exposure. In control mice, activity was almost entirely restricted to the night-time, and Tb fluctuated ∼1.7°C between daytime lows and night-time highs. Activity, body mass and food consumption were reduced and water consumption was increased in later stages of summer warming. This was accompanied by strong Tb dysregulation that culminated in a complete reversal of the diel pattern of Tb variation, with Tb reaching extreme highs (∼40°C) during daytime heat but extreme lows (∼34°C) at cooler night-time temperatures. Summer warming was also associated with reduced ability to generate body heat, as reflected by decreased thermogenic capacity and decreased mass and uncoupling protein (UCP1) content of brown adipose tissue. Our findings suggest that thermoregulatory trade-offs associated with daytime heat exposure can affect Tb and activity at cooler night-time temperatures, impacting the ability of nocturnal mammals to perform behaviours important for fitness in the wild.


Asunto(s)
Actividad Motora , Peromyscus , Animales , Temperatura , Estaciones del Año , Peromyscus/fisiología , Regulación de la Temperatura Corporal/fisiología
2.
Proc Biol Sci ; 289(1983): 20221553, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36168757

RESUMEN

The evolution of endothermy was instrumental to the diversification of birds and mammals, but the energetic demands of maintaining high body temperature could offset the advantages of endothermy in some environments. We hypothesized that reductions in body temperature help high-altitude natives overcome the metabolic challenges of cold and hypoxia in their native environment. Deer mice (Peromyscus maniculatus) from high-altitude and low-altitude populations were bred in captivity to the second generation and were acclimated as adults to warm normoxia or cold hypoxia. Subcutaneous temperature (Tsub, used as a proxy for body temperature) and cardiovascular function were then measured throughout the diel cycle using biotelemetry. Cold hypoxia increased metabolic demands, as reflected by increased food consumption and heart rate (associated with reduced vagal tone). These increased metabolic demands were offset by plastic reductions in Tsub (approx. 2°C) in response to cold hypoxia, and highlanders had lower Tsub (approx. 1°C) than lowlanders in both environmental treatments. Empirical and theoretical evidence suggested that these reductions could together reduce metabolic demands by approximately 10-30%. Therefore, plastic and evolved reductions in body temperature can help mammals overcome the metabolic challenges at high altitude and may be a valuable energy-saving strategy in some non-hibernating endotherms in extreme environments.


Asunto(s)
Altitud , Peromyscus , Aclimatación , Animales , Temperatura Corporal , Regulación de la Temperatura Corporal , Hipoxia , Peromyscus/fisiología , Plásticos
3.
Am J Physiol Regul Integr Comp Physiol ; 323(4): R547-R560, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36062900

RESUMEN

Hypoxia can have significant impacts on cardiovascular physiology, but the effects of chronic exposure to moderate hypoxia and how they differ between sexes remain poorly understood. We used physiological telemetry to examine this issue in CD-1 mice. Adult mice were chronically exposed to normoxia or hypobaric hypoxia (12 kPa O2) for 6 wk and then subjected to telemetry measurements of routine physiology across the diel cycle. Heart rate (fH), mean arterial blood pressure (Pmean), body temperature (Tb), and activity were greater during the nighttime active phase than the daytime inactive phase. Chronic hypoxia had no effect on these traits at night but had sex-specific effects during the day, when chronic hypoxia reduced fH, Tb, and activity in males but not females. These differences existed without any effect of chronic hypoxia on α-adrenergic or nitric oxide tone on the vasculature (assessed as Pmean response to pharmacological blockade). Responses to acute hypoxia were then measured during stepwise reductions in inspired O2 from 21 to 8 kPa O2. O2 consumption rate, fH, Pmean, and Tb declined in severe hypoxia, but the O2 tension at which this began was lower in mice held in chronic hypoxia. However, the hypoxic ventilatory response was augmented by exposure to chronic hypoxia in females but not in males. Females also exhibited larger increases in lung mass and less right ventricle hypertrophy than males in chronic hypoxia. Our results support the growing evidence that there can be considerable sex differences in the cardiorespiratory responses to hypoxia.


Asunto(s)
Óxido Nítrico , Respiración , Aclimatación/fisiología , Adrenérgicos , Animales , Femenino , Frecuencia Cardíaca/fisiología , Hipoxia , Masculino , Ratones , Consumo de Oxígeno/fisiología
4.
J Exp Biol ; 225(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34913467

RESUMEN

Physiological systems often have emergent properties but the effects of genetic variation on physiology are often unknown, which presents a major challenge to understanding the mechanisms of phenotypic evolution. We investigated whether genetic variants in haemoglobin (Hb) that contribute to high-altitude adaptation in deer mice (Peromyscus maniculatus) are associated with evolved changes in the control of breathing. We created F2 inter-population hybrids of highland and lowland deer mice to test for phenotypic associations of α- and ß-globin variants on a mixed genetic background. Hb genotype had expected effects on Hb-O2 affinity that were associated with differences in arterial O2 saturation in hypoxia. However, high-altitude genotypes were also associated with breathing phenotypes that should contribute to enhancing O2 uptake in hypoxia. Mice with highland α-globin exhibited a more effective breathing pattern, with highland homozygotes breathing deeper but less frequently across a range of inspired O2, and this difference was comparable to the evolved changes in breathing pattern in deer mouse populations native to high altitude. The ventilatory response to hypoxia was augmented in mice that were homozygous for highland ß-globin. The association of globin variants with variation in breathing phenotypes could not be recapitulated by acute manipulation of Hb-O2 affinity, because treatment with efaproxiral (a synthetic drug that acutely reduces Hb-O2 affinity) had no effect on breathing in normoxia or hypoxia. Therefore, adaptive variation in Hb may have unexpected effects on physiology in addition to the canonical function of this protein in circulatory O2 transport.


Asunto(s)
Altitud , Peromyscus , Animales , Variación Genética , Hemoglobinas/genética , Hipoxia/genética , Ratones , Oxígeno/metabolismo , Peromyscus/genética , Respiración
5.
BMC Biol ; 19(1): 128, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158035

RESUMEN

BACKGROUND: Complex organismal traits are often the result of multiple interacting genes and sub-organismal phenotypes, but how these interactions shape the evolutionary trajectories of adaptive traits is poorly understood. We examined how functional interactions between cardiorespiratory traits contribute to adaptive increases in the capacity for aerobic thermogenesis (maximal O2 consumption, V̇O2max, during acute cold exposure) in high-altitude deer mice (Peromyscus maniculatus). We crossed highland and lowland deer mice to produce F2 inter-population hybrids, which expressed genetically based variation in hemoglobin (Hb) O2 affinity on a mixed genetic background. We then combined physiological experiments and mathematical modeling of the O2 transport pathway to examine the links between cardiorespiratory traits and V̇O2max. RESULTS: Physiological experiments revealed that increases in Hb-O2 affinity of red blood cells improved blood oxygenation in hypoxia but were not associated with an enhancement in V̇O2max. Sensitivity analyses performed using mathematical modeling showed that the influence of Hb-O2 affinity on V̇O2max in hypoxia was contingent on the capacity for O2 diffusion in active tissues. CONCLUSIONS: These results suggest that increases in Hb-O2 affinity would only have adaptive value in hypoxic conditions if concurrent with or preceded by increases in tissue O2 diffusing capacity. In high-altitude deer mice, the adaptive benefit of increasing Hb-O2 affinity is contingent on the capacity to extract O2 from the blood, which helps resolve controversies about the general role of hemoglobin function in hypoxia tolerance.


Asunto(s)
Altitud , Peromyscus , Animales , Hemoglobinas , Hipoxia/genética , Oxígeno , Termogénesis
6.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R800-R811, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33826424

RESUMEN

Hypoxia at high altitude can constrain metabolism and performance and can elicit physiological adjustments that are deleterious to health and fitness. Hypoxic pulmonary hypertension is a particularly serious and maladaptive response to chronic hypoxia, which results from vasoconstriction and pathological remodeling of pulmonary arteries, and can lead to pulmonary edema and right ventricle hypertrophy. We investigated whether deer mice (Peromyscus maniculatus) native to high altitude have attenuated this maladaptive response to chronic hypoxia and whether evolved changes or hypoxia-induced plasticity in pulmonary vasculature might impact ventilation-perfusion (V-Q) matching in chronic hypoxia. Deer mouse populations from both high and low altitudes were born and raised to adulthood in captivity at sea level, and various aspects of lung function were measured before and after exposure to chronic hypoxia (12 kPa O2, simulating the O2 pressure at 4,300 m) for 6-8 wk. In lowlanders, chronic hypoxia increased right ventricle systolic pressure (RVSP) from 14 to 19 mmHg (P = 0.001), in association with thickening of smooth muscle in pulmonary arteries and right ventricle hypertrophy. Chronic hypoxia also impaired V-Q matching in lowlanders (measured at rest using SPECT-CT imaging), as reflected by increased log SD of the perfusion distribution (log SDQ) from 0.55 to 0.86 (P = 0.031). In highlanders, chronic hypoxia had attenuated effects on RVSP and no effects on smooth muscle thickness, right ventricle mass, or V-Q matching. Therefore, evolved changes in lung function help attenuate maladaptive plasticity and contribute to hypoxia tolerance in high-altitude deer mice.


Asunto(s)
Hipertensión Pulmonar/fisiopatología , Hipoxia/fisiopatología , Consumo de Oxígeno/fisiología , Oxígeno/metabolismo , Peromyscus/metabolismo , Aclimatación/fisiología , Animales , Hipertensión Pulmonar/metabolismo , Pulmón/fisiopatología , Ratones , Perfusión , Peromyscus/fisiología
7.
Proc Biol Sci ; 287(1927): 20192750, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32429808

RESUMEN

Animals native to the hypoxic and cold environment at high altitude provide an excellent opportunity to elucidate the integrative mechanisms underlying the adaptive evolution and plasticity of complex traits. The capacity for aerobic thermogenesis can be a critical determinant of survival for small mammals at high altitude, but the physiological mechanisms underlying the evolution of this performance trait remain unresolved. We examined this issue by comparing high-altitude deer mice (Peromyscus maniculatus) with low-altitude deer mice and white-footed mice (P. leucopus). Mice were bred in captivity and adults were acclimated to each of four treatments: warm (25°C) normoxia, warm hypoxia (12 kPa O2), cold (5°C) normoxia or cold hypoxia. Acclimation to hypoxia and/or cold increased thermogenic capacity in deer mice, but hypoxia acclimation led to much greater increases in thermogenic capacity in highlanders than in lowlanders. The high thermogenic capacity of highlanders was associated with increases in pulmonary O2 extraction, arterial O2 saturation, cardiac output and arterial-venous O2 difference. Mechanisms underlying the evolution of enhanced thermogenic capacity in highlanders were partially distinct from those underlying the ancestral acclimation responses of lowlanders. Environmental adaptation has thus enhanced phenotypic plasticity and expanded the physiological toolkit for coping with the challenges at high altitude.


Asunto(s)
Oxígeno/metabolismo , Aclimatación , Altitud , Animales , Hipoxia , Ratones , Consumo de Oxígeno/fisiología , Peromyscus , Termogénesis
8.
J Exp Biol ; 220(Pt 14): 2589-2597, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28495871

RESUMEN

Reduced oxygen availability (hypoxia) is a potent stressor during embryonic development, altering the trajectory of trait maturation and organismal phenotype. We previously documented that chronic embryonic hypoxia has a lasting impact on the metabolic response to feeding in juvenile snapping turtles (Chelydra serpentina). Turtles exposed to hypoxia as embryos [10% O2 (H10)] exhibited an earlier and increased peak postprandial oxygen consumption rate, compared with control turtles [21% O2 (N21)]. In the current study, we measured central blood flow patterns to determine whether the elevated postprandial metabolic response in H10 turtles is linked to lasting impacts on convective transport. Five years after hatching, turtles were instrumented to quantify systemic ([Formula: see text]) and pulmonary ([Formula: see text]) blood flows and heart rate (fH) before and after a ∼5% body mass meal. In adult N21 and H10 turtles, fH was increased significantly by feeding. Although total stroke volume (VS,tot) remained at fasted values, this tachycardia contributed to an elevation in total cardiac output ([Formula: see text]). However, there was a postprandial reduction in a net left-right (L-R) shunt in N21 snapping turtles only. Relative to N21 turtles, H10 animals exhibited higher [Formula: see text] due to increased blood flow through the right systemic outflow vessels of the heart. This effect of hypoxic embryonic development, reducing a net L-R cardiac shunt, may support the increased postprandial metabolic rate we previously reported in H10 turtles, and is further demonstration of adult reptile cardiovascular physiology being programmed by embryonic hypoxia.


Asunto(s)
Hipoxia/fisiopatología , Pulmón/irrigación sanguínea , Periodo Posprandial/fisiología , Tortugas/embriología , Tortugas/fisiología , Animales , Gasto Cardíaco , Circulación Coronaria , Embrión no Mamífero/fisiopatología , Frecuencia Cardíaca/fisiología , Hipoxia/embriología
10.
Am J Physiol Regul Integr Comp Physiol ; 310(2): R176-84, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26608655

RESUMEN

Studies of embryonic and hatchling reptiles have revealed marked plasticity in morphology, metabolism, and cardiovascular function following chronic hypoxic incubation. However, the long-term effects of chronic hypoxia have not yet been investigated in these animals. The aim of this study was to determine growth and postprandial O2 consumption (V̇o2), heart rate (fH), and mean arterial pressure (Pm, in kPa) of common snapping turtles (Chelydra serpentina) that were incubated as embryos in chronic hypoxia (10% O2, H10) or normoxia (21% O2, N21). We hypothesized that hypoxic development would modify posthatching body mass, metabolic rate, and cardiovascular physiology in juvenile snapping turtles. Yearling H10 turtles were significantly smaller than yearling N21 turtles, both of which were raised posthatching in normoxic, common garden conditions. Measurement of postprandial cardiovascular parameters and O2 consumption were conducted in size-matched three-year-old H10 and N21 turtles. Both before and 12 h after feeding, H10 turtles had a significantly lower fH compared with N21 turtles. In addition, V̇o2 was significantly elevated in H10 animals compared with N21 animals 12 h after feeding, and peak postprandial V̇o2 occurred earlier in H10 animals. Pm of three-year-old turtles was not affected by feeding or hypoxic embryonic incubation. Our findings demonstrate that physiological impacts of developmental hypoxia on embryonic reptiles continue into juvenile life.


Asunto(s)
Sistema Cardiovascular/fisiopatología , Hipoxia/fisiopatología , Tortugas , Adaptación Fisiológica , Factores de Edad , Animales , Presión Arterial , Biomarcadores/sangre , Glucemia/metabolismo , Peso Corporal , Sistema Cardiovascular/embriología , Sistema Cardiovascular/crecimiento & desarrollo , Sistema Cardiovascular/metabolismo , Ingestión de Alimentos , Embrión no Mamífero/fisiopatología , Metabolismo Energético , Frecuencia Cardíaca , Hipoxia/sangre , Hipoxia/embriología , Ácido Láctico/sangre , Consumo de Oxígeno , Fenotipo , Factores de Tiempo , Tortugas/sangre , Tortugas/embriología , Tortugas/crecimiento & desarrollo
11.
bioRxiv ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38979138

RESUMEN

A fundamental question in evolutionary biology concerns the relative contributions of phenotypic plasticity vs. local adaptation (genotypic specialization) in enabling wide-ranging species to inhabit diverse environmental conditions. Here we conduct a long-term hypoxia acclimation experiment to assess the relative roles of local adaptation and plasticity in enabling highland and lowland deer mice ( Peromyscus maniculatus ) to sustain aerobic thermogenesis at progressively increasing elevations. We assessed the relative physiological performance capacities of highland and lowland natives as they were exposed to progressive, stepwise increases in hypoxia, simulating the gradual ascent from sea level to an elevation of 6000 m. The final elevation of 6000 m far exceeds the highest attainable elevations within the species' range, and therefore tests the animals' ability to tolerate levels of hypoxia that surpass the prevailing conditions within their current distributional limits. Our results demonstrate that highland natives exhibit superior thermogenic capacities at the most severe levels of hypoxia, suggesting that the species' broad fundamental niche and its ability to inhabit such a broad range of elevational zones is attributable to a combination of genetically based local adaptation and plasticity. Transcriptomic and physiological measurements identify evolved changes in the acclimation response to hypoxia that contribute to the enhanced thermogenic capacity of highland natives. SIGNIFICANCE STATEMENT: In species that are distributed across steep environmental gradients, the ability to inhabit a broad range of conditions may be attributable to local adaptation and/or a generalized acclimatization capacity (phenotypic plasticity). By experimentally acclimating highland and lowland deer mice ( Peromyscus maniculatus ) to progressively increasing levels of hypoxia during a simulated ascent to 6000 m, we assessed the relative roles of evolved and plastic changes in thermogenic capacity. At especially severe levels of hypoxia, the superior thermogenic performance of highland natives relative to lowland conspecifics suggests that the broad fundamental niche of deer mice is largely attributable to local adaptation to different elevational zones, including evolved plasticity in gene expression and respiratory traits.

12.
Curr Res Physiol ; 5: 83-92, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35169714

RESUMEN

Studies of animals native to high altitude can provide valuable insight into physiological mechanisms and evolution of performance in challenging environments. We investigated how mechanisms controlling cardiovascular function may have evolved in deer mice (Peromyscus maniculatus) native to high altitude. High-altitude deer mice and low-altitude white-footed mice (P. leucopus) were bred in captivity at sea level, and first-generation lab progeny were raised to adulthood and acclimated to normoxia or hypoxia. We then used pharmacological agents to examine the capacity for adrenergic receptor stimulation to modulate heart rate (f H) and mean arterial pressure (P mean) in anaesthetized mice, and used cardiac pressure-volume catheters to evaluate the contractility of the left ventricle. We found that highlanders had a consistently greater capacity to increase f H via pharmacological stimulation of ß1-adrenergic receptors than lowlanders. Also, whereas hypoxia acclimation reduced the capacity for increasing P mean in response to α-adrenergic stimulation in lowlanders, highlanders exhibited no plasticity in this capacity. These differences in highlanders may help augment cardiac output during locomotion or cold stress, and may preserve their capacity for α-mediated vasoconstriction to more effectively redistribute blood flow to active tissues. Highlanders did not exhibit any differences in some measures of cardiac contractility (maximum pressure derivative, dP/dtmax, or end-systolic elastance, Ees), but ejection fraction was highest in highlanders after hypoxia acclimation. Overall, our results suggest that evolved changes in sensitivity to adrenergic stimulation of cardiovascular function may help deer mice cope with the cold and hypoxic conditions at high altitude.

13.
Artículo en Inglés | MEDLINE | ID: mdl-34119652

RESUMEN

Aerobic capacity is a complex performance trait with important consequences for fitness, and is determined by the integrated function of the O2 transport pathway. The components of the O2 pathway interact and function as an integrated physiological system, which could strongly influence the contribution of each component to variation in aerobic capacity. In this commentary, we highlight the value of hierarchical reductionism - combining studies of how component parts work in isolation with studies of how components interact within integrated systems - for understanding the evolution of aerobic capacity. This is achieved by focussing on the role of haemoglobin in adaptive increases in aerobic capacity in high-altitude deer mice (Peromyscus maniculatus). High-altitude deer mice have evolved increased aerobic capacity in hypoxia, in association with evolved changes in several subordinate traits across the O2 pathway. This includes an evolved increase in Hb-O2 affinity - which helps safeguard arterial O2 saturation in hypoxia - and reductionist approaches have been successful at identifying the genetic, structural, and biochemical underpinnings of variation in this trait. However, theoretical modelling and empirical measurements suggest that increased Hb-O2 affinity may not augment aerobic capacity on its own. The adaptive benefit of increased Hb-O2 affinity in high-altitude deer mice appears to have been contingent upon antecedent changes in other traits in the O2 pathway, particularly an increased capacity for O2 diffusion and utilization in active tissues. These findings highlight the importance of understanding the interactions between the components of integrated systems for fully appreciating the evolution of complex performance phenotypes.


Asunto(s)
Adaptación Fisiológica , Altitud , Hipoxia/fisiopatología , Oxígeno/metabolismo , Peromyscus/fisiología , Respiración , Animales
14.
Physiol Rep ; 9(11): e14865, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34057300

RESUMEN

In vertebrates, changes in surface temperature following exposure to an acute stressor are thought to be promising indicators of the physiological stress response that may be captured noninvasively by infrared thermography. However, the efficacy of using stress-induced changes in surface temperature as indicators of physiological stress-responsiveness requires: (1) an understanding of how such responses vary across the body, (2) a magnitude of local, stress-induced thermal responses that is large enough to discriminate and quantify differences among individuals with conventional technologies, and (3) knowledge of how susceptible measurements across different body regions are to systematic error. In birds, temperature of the bare tissues surrounding the eye (the periorbital, or "eye," region) and covering the bill have each been speculated as possible predictors of stress physiological state. Using the domestic pigeon (Columba livia domestica; n = 9), we show that stress-induced changes in surface temperature are most pronounced at the bill and that thermal responses at only the bill have sufficient resolution to detect and quantify differences in responsiveness among individuals. More importantly, we show that surface temperature estimates at the eye region experience greater error due to changes in bird orientation than those at the bill. Such error concealed detection of stress-induced thermal responses at the eye region. Our results highlight that: (1) in some species, bill temperature may serve as a more robust indicator of autonomic stress-responsiveness than eye region temperature, and (2) future studies should account for spatial orientation of study individuals if inference is to be drawn from infrared thermographic images.


Asunto(s)
Columbidae/fisiología , Estrés Fisiológico/fisiología , Termografía/veterinaria , Animales , Pico/diagnóstico por imagen , Pico/fisiopatología , Temperatura Corporal/fisiología , Ojo/diagnóstico por imagen , Ojo/fisiopatología , Femenino , Rayos Infrarrojos , Masculino , Termografía/métodos
15.
Conserv Physiol ; 8(1): coz108, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31988750

RESUMEN

Climate change is predicted to impact freshwater aquatic environments through changes to water temperature (T water), river flow and eutrophication. Riverine habitats contain many economically and ecologically important fishes. One such group is the migratory salmonids, which are sensitive to warm T water and low O2 (hypoxia). While several studies have investigated the independent effects of T water and hypoxia on fish physiology, the combined effects of these stressors is less well known. Furthermore, no study has investigated the effects of T water and O2 saturation levels within the range currently experienced by a salmonid species. Thus, the aim of this study was to investigate the simultaneous effects of T water and O2 saturation level on the energetics and kinematics of steady-state swimming in brown trout, Salmo trutta. No effect of O2 saturation level (70 and 100% air saturation) on tail-beat kinematics was detected. Conversely, T water (10, 14, 18 and 22°C) did affect tail-beat kinematics, but a trade-off between frequency (f tail) and amplitude (A, maximum tail excursion) maintained the Strouhal number (St = f tail• A/U, where U is swimming speed) within the theoretically most mechanically efficient range. Swimming oxygen consumption rate ([Formula: see text]) and cost of transport increased with both U and T water. The only effect of O2 saturation level was observed at the highest T water (22°C) and fastest swimming speed (two speeds were used-0.6 and 0.8 m s-1). As the extremes of this study are consistent with current summer conditions in parts of UK waterways, our findings may indicate that S. trutta will be negatively impacted by the increased T water and reduced O2 levels likely presented by anthropogenic climate change.

16.
J Comp Physiol B ; 185(4): 401-11, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25774046

RESUMEN

Acute and chronic changes in ambient temperature alter several aspects of reptilian physiology. We investigated the effects of each type of temperature change on reptilian cardiovascular regulation in red-eared slider turtles (Trachemys scripta), a species known to experience marked seasonal changes in ambient temperature. Turtles were instrumented with occlusive catheters in the femoral artery and vein. Following an acclimation period of 10 days at 13 °C (13(1)), cardiovascular responses to adrenaline, and the cardiac limb of the baroreflex were quantified. Ambient temperature was then reduced 1 °C day(-1) until 3 °C was reached (3(1)). Turtles were maintained at this temperature for 1-week before cardiovascular responses were reassessed. Turtles were then gradually (1 °C day(-1)) returned to an ambient temperature of 13 °C, (13(2)). After a 1-week re-acclimation period, cardiovascular responses were again determined. Finally, 1-week post-pharmacological manipulation of turtles in the 13(2) treatment, ambient temperature was reduced to 3 °C over 24 h (3(2)), and cardiovascular responses were again assessed. Temperature reduction from 13(1) to 3(1) decreased mean arterial blood pressure (P(m)) and heart rate (f(H)) by ~38 and ~63%, respectively. Acute temperature reduction, from 13(2) to 3(2), decreased f(H) similarly, ~66%; however, while P(m) decreased ~28%, this was not significantly different than P(m) at 13(2). The adrenaline injections increased f(H) ranging from 90 to 170% at 13 °C which was a greater change than that observed at 3 °C ranging from a 40 to 70% increase. The increase in P m at the lowest dose of adrenaline did not differ across the temperature treatment groups. The operational point (set-point) P(m) of the baroreflex was decreased similarly by both methods of temperature reduction (3(1) or 3(2)). Further, a hypertensive cardiac baroreflex was absent in the majority of the animals studied independent of temperature. Baroreflex gain and normalized gain based on individual estimates of the relationship were decreased by temperature reduction similarly. Collectively, the data suggest that red-eared slider turtles modulate (down-regulate) some cardiovascular control mechanisms during reduced ambient temperature.


Asunto(s)
Aclimatación/fisiología , Fenómenos Fisiológicos Cardiovasculares , Temperatura , Tortugas/fisiología , Animales , Barorreflejo/fisiología , Presión Sanguínea/fisiología , Fenómenos Fisiológicos Cardiovasculares/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Epinefrina/farmacología , Frecuencia Cardíaca/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA