Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Cell Microbiol ; 18(2): 211-22, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26247322

RESUMEN

Virus like element (VLE) encoded killer toxins of Pichia acaciae and Kluyveromyces lactis kill target cells through anticodon nuclease (ACNase) activity directed against tRNA(Gln) and tRNA(Glu) respectively. Not only does tRNA cleavage disable translation, it also affects DNA integrity as well. Consistent with DNA damage, which is involved in toxicity, target cells' mutation frequencies are elevated upon ACNase exposure, suggesting a link between translational integrity and genome surveillance. Here, we analysed whether ACNase action impedes the periodically and highly expressed S-phase specific ribonucleotide reductase (RNR) and proved that RNR expression is severely affected by PaT. Because RNR catalyses the rate-limiting step in dNTP synthesis, mutants affected in dNTP synthesis were scrutinized with respect to ACNase action. Mutations elevating cellular dNTPs antagonized the action of both the above ACNases, whereas mutations lowering dNTPs aggravated toxicity. Consistently, prevention of tRNA cleavage in elp3 or trm9 mutants, which both affect the wobble uridine modification of the target tRNA, suppressed the toxin hypersensitivity of a dNTP synthesis mutant. Moreover, dNTP synthesis defects exacerbated the PaT ACNase sensitivity of cells defective in homologous recombination, proving that dNTP depletion is responsible for subsequent DNA damage.


Asunto(s)
Daño del ADN , Factores Asesinos de Levadura/metabolismo , Pichia/enzimología , Ribonucleasas/metabolismo , Ribonucleótido Reductasas/metabolismo
2.
Curr Genet ; 60(3): 213-22, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24719080

RESUMEN

The cytoplasmic virus-like element pWR1A from Debaryomyces robertsiae encodes a toxin (DrT) with similarities to the Pichia acaciae killer toxin PaT, which acts by importing a toxin subunit (PaOrf2) with tRNA anticodon nuclease activity into target cells. As for PaT, loss of the tRNA methyltransferase Trm9 or overexpression of tRNA(Gln) increases DrT resistance and the amount of tRNA(Gln) is reduced upon toxin exposure or upon induced intracellular expression of the toxic DrT subunit gene DrORF3, indicating DrT and PaT to share the same in vivo target. Consistent with a specific tRNase activity of DrOrf3, the protein cleaves tRNA(Gln) but not tRNA(Glu) in vitro. Heterologous cytoplasmic expression identified DrOrf5 as the DrT specific immunity factor; it confers resistance to exogenous DrT as well as to intracellular expression of DrOrf3 and prevents tRNA depletion by the latter. The PaT immunity factor PaOrf4, a homologue of DrOrf5 disables intracellular action of both toxins. However, the DrT protection level mediated by PaOrf4 is reduced compared to DrOrf5, implying a recognition mechanism for the cognate toxic subunit, leading to incomplete toxicity suppression of similar, but non-cognate toxic subunits.


Asunto(s)
Factores Inmunológicos/genética , Factores Asesinos de Levadura/genética , Factores Asesinos de Levadura/metabolismo , ARN de Transferencia de Glutamina/genética , ARN de Transferencia de Glutamina/metabolismo , Endorribonucleasas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expresión Génica , Orden Génico , Inmunidad/genética , Factores Inmunológicos/metabolismo , División del ARN
3.
Appl Environ Microbiol ; 80(20): 6549-59, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25128337

RESUMEN

Zymocin is a Kluyveromyces lactis protein toxin composed of αßγ subunits encoded by the cytoplasmic virus-like element k1 and functions by αß-assisted delivery of the anticodon nuclease (ACNase) γ into target cells. The toxin binds to cells' chitin and exhibits chitinase activity in vitro that might be important during γ import. Saccharomyces cerevisiae strains carrying k1-derived hybrid elements deficient in either αß (k1ORF2) or γ (k1ORF4) were generated. Loss of either gene abrogates toxicity, and unexpectedly, Orf2 secretion depends on Orf4 cosecretion. Functional zymocin assembly can be restored by nuclear expression of k1ORF2 or k1ORF4, providing an opportunity to conduct site-directed mutagenesis of holozymocin. Complementation required active site residues of α's chitinase domain and the sole cysteine residue of ß (Cys250). Since ßγ are reportedly disulfide linked, the requirement for the conserved γ C231 was probed. Toxicity of intracellularly expressed γ C231A indicated no major defect in ACNase activity, while complementation of k1ΔORF4 by γ C231A was lost, consistent with a role of ß C250 and γ C231 in zymocin assembly. To test the capability of αß to carry alternative cargos, the heterologous ACNase from Pichia acaciae (P. acaciae Orf2 [PaOrf2]) was expressed, along with its immunity gene, in k1ΔORF4. While efficient secretion of PaOrf2 was detected, suppression of the k1ΔORF4-derived k1Orf2 secretion defect was not observed. Thus, the dependency of k1Orf2 on k1Orf4 cosecretion needs to be overcome prior to studying αß's capability to deliver other cargo proteins into target cells.


Asunto(s)
Factores Asesinos de Levadura/genética , Kluyveromyces/genética , Mutagénesis Sitio-Dirigida/métodos , Dominio Catalítico , Quitina/metabolismo , Quitinasas/metabolismo , Cisteína , Prueba de Complementación Genética , Factores Asesinos de Levadura/metabolismo , Subunidades de Proteína , Ribonucleasas/genética , Ribonucleasas/metabolismo , Saccharomyces cerevisiae/genética
4.
Yeast ; 30(1): 33-43, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23148020

RESUMEN

Wickerhamomyces anomalus killer strains are important for fighting pathogenic yeasts and for controlling harmful yeasts and bacteria in the food industry. Targeted disruption of key genes in ß-glucan synthesis of a sensitive Saccharomyces cerevisiae strain conferred resistance to the toxins of W. anomalus strains BS91, BCA15 and BCU24 isolated from olive brine. Competitive inhibition of the killing activities by laminarin and pustulan refer to ß-1,3- and ß-1,6-glucans as the main primary toxin targets. The extracellular exoglucanase-encoding genes WaEXG1 and WaEXG2 from the three strains were sequenced and were found to display noticeable similarities to those from known potent W. anomalus killer strains.


Asunto(s)
Glicósido Hidrolasas/genética , Olea/microbiología , Saccharomycetales/enzimología , Saccharomycetales/genética , Sales (Química) , ADN de Hongos/química , ADN de Hongos/genética , Glicósido Hidrolasas/metabolismo , Datos de Secuencia Molecular , Saccharomycetales/aislamiento & purificación , Análisis de Secuencia de ADN
5.
Mol Genet Genomics ; 285(3): 185-95, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21188417

RESUMEN

Killer toxins from Kluyveromyces lactis (zymocin) and Pichia acaciae (PaT) were found to disable translation in target cells by virtue of anticodon nuclease (ACNase) activities on tRNA(Glu) and tRNA(Gln), respectively. Surprisingly, however, ACNase exposure does not only impair translation, but also affects genome integrity and concomitantly DNA damage occurs. Previously, it was shown that homologous recombination protects cells from ACNase toxicity. Here, we have analyzed whether other DNA repair pathways are functional in conferring ACNase resistance as well. In addition to HR, base excision repair (BER) and postreplication repair (PRR) promote clear resistance to either, PaT and zymocin. Comparative toxin sensitivity analysis of BER mutants revealed that its ACNase protective function is due to the endonucleases acting on apurinic (AP) sites, whereas none of the known DNA glycosylases is involved. Because PaT and zymocin require the presence of the ELP3/TRM9-dependent wobble uridine modification 5-methoxy-carbonyl-methyl (mcm(5)) for tRNA cleavage, we analyzed toxin response in DNA repair mutants additionally lacking such tRNA modifications. ACNase resistance caused by elp3 or trm9 mutations was found to rescue hypersensitivity of DNA repair defects, consistent with DNA damage to occur as a consequence of tRNA cleavage. The obtained genetic evidence promises to reveal new aspects into the mechanism linking translational fidelity and genome surveillance.


Asunto(s)
Reparación del ADN/genética , Kluyveromyces/enzimología , Pichia/enzimología , Biosíntesis de Proteínas , Ribonucleasas/metabolismo , Saccharomyces cerevisiae/genética , Inestabilidad Genómica , Histona Acetiltransferasas/genética , Factores Asesinos de Levadura/metabolismo , Factores Asesinos de Levadura/farmacología , Factores Asesinos de Levadura/toxicidad , Kluyveromyces/genética , Mutación/genética , Pichia/genética , Biosíntesis de Proteínas/efectos de los fármacos , ARN de Transferencia/metabolismo , Ribonucleasas/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , ARNt Metiltransferasas/genética
6.
Mol Microbiol ; 69(3): 681-97, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18532979

RESUMEN

The Pichia acaciae killer toxin (PaT) arrests yeast cells in the S-phase of the cell cycle and induces DNA double-strand breaks (DSBs). Surprisingly, loss of the tRNA-methyltransferase Trm9 - along with the Elongator complex involved in synthesis of 5-methoxy-carbonyl-methyl (mcm(5)) modification in certain tRNAs - conferred resistance against PaT. Overexpression of mcm(5)-modified tRNAs identified tRNA(Gln)((UUG)) as the intracellular target. Consistently, toxin-challenged cells displayed reduced levels of tRNA(Gln) and in vitro the heterologously expressed active toxin subunit disrupts the integrity of tRNA(Gln)((UUG)). Other than Kluyveromyces lactis zymocin, an endonuclease specific for tRNA(Glu)((UUC)), affecting its target in a mcm(5)-dependent manner, PaT exerts activity also on tRNA(Gln) lacking such modification. As sensitivity is restored in trm9 elp3 double mutants, target tRNA cleavage is selectively inhibited by incomplete wobble uridine modification, as seen in trm9, but not in elp3 or trm9 elp3 cells. In addition to tRNA(Gln)((UUG)), tRNA(Gln)((CUG)) is also cleaved in vitro and overexpression of the corresponding gene increased resistance. Consistent with tRNA(Gln)((CUG)) as an additional TRM9-independent target, overexpression of PaT's tRNase subunit abolishes trm9 resistance. Most interestingly, a functional DSB repair pathway confers PaT but also zymocin resistance, suggesting DNA damage to occur generally concomitant with specific tRNA offence.


Asunto(s)
Micotoxinas/farmacología , Pichia/metabolismo , ARN de Transferencia de Glutamina/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Farmacorresistencia Fúngica , Factores Asesinos de Levadura , Kluyveromyces/genética , Kluyveromyces/metabolismo , Pichia/genética , ARN de Transferencia de Glutamina/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
7.
PLoS One ; 11(7): e0157611, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27472060

RESUMEN

Previous studies revealed DNA damage to occur during the toxic action of PaT, a fungal anticodon ribonuclease (ACNase) targeting the translation machinery via tRNA cleavage. Here, we demonstrate that other translational stressors induce DNA damage-like responses in yeast as well: not only zymocin, another ACNase from the dairy yeast Kluyveromyces lactis, but also translational antibiotics, most pronouncedly hygromycin B (HygB). Specifically, DNA repair mechanisms BER (base excision repair), HR (homologous recombination) and PRR (post replication repair) provided protection, whereas NHEJ (non-homologous end-joining) aggravated toxicity of all translational inhibitors. Analysis of specific BER mutants disclosed a strong HygB, zymocin and PaT protective effect of the endonucleases acting on apurinic sites. In cells defective in AP endonucleases, inactivation of the DNA glycosylase Ung1 increased tolerance to ACNases and HygB. In addition, Mag1 specifically contributes to the repair of DNA lesions caused by HygB. Consistent with DNA damage provoked by translation inhibitors, mutation frequencies were elevated upon exposure to both fungal ACNases and HygB. Since polymerase ζ contributed to toxicity in all instances, error-prone lesion-bypass probably accounts for the mutagenic effects. The finding that differently acting inhibitors of protein biosynthesis induce alike cellular responses in DNA repair mutants is novel and suggests the dependency of genome stability on translational fidelity.


Asunto(s)
Daño del ADN , Higromicina B/farmacología , ARN de Transferencia/metabolismo , Ribonucleasas/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Mutación , Biosíntesis de Proteínas/efectos de los fármacos , ARN de Hongos/genética , Levaduras/enzimología , Levaduras/genética , Levaduras/crecimiento & desarrollo , Levaduras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA