Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Rep ; 46(3): 3387-3397, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31006097

RESUMEN

Oxidative stress is a key factor of and closely implicated in the pathogenesis of Alzheimer's disease (AD). We herein used tert-butyl hydroperoxide (t-BHP) to induce oxidative stress and mimic oxidative neurotoxicity in vitro. Lycopene is a natural antioxidant that has a strong ability to eliminate free radicals and shows effective protection in some neurodegenerative disease models. However, the effect of lycopene on t-BHP-induced neuronal damage in primary mouse neurons is unknown. This study aimed to investigate the effects of lycopene on t-BHP-induced neuronal damage and the related mechanisms. We found that lycopene pretreatment effectively enhanced the cell viability, improved the neuron morphology, increased the GSH/GSSG level, restored the mitochondrial membrane potential (ΔΨm) and decreased reactive oxygen species generation. Furthermore, lycopene reduced the ratios of Bax:Bcl-2 and cleaved caspase-3:caspase-3 and the level of cytochrome C, increased the levels of synaptophysin (SYP) and postsynaptic density 95 (PSD95) and activated the PI3K/Akt pathway. In conclusion, lycopene attenuated oxidative stress and reduced t-BHP-induced cell apoptosis, and the mechanism is likely related to activation of the PI3K/Akt pathway. Therefore, lycopene is a potential agent for preventing oxidative stress-mediated AD.


Asunto(s)
Apoptosis/efectos de los fármacos , Licopeno/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Supervivencia Celular/efectos de los fármacos , Licopeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Cultivo Primario de Células , Sustancias Protectoras/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , terc-Butilhidroperóxido/farmacología
2.
Photodermatol Photoimmunol Photomed ; 35(5): 360-368, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31166622

RESUMEN

BACKGROUND/PURPOSE: Ultraviolet (UV) A (315-400 nm) is the UV light that most frequently reaches the Earth's surface and can penetrate the epidermis through to the dermis, causing various issues, including skin aging and skin cancer. The results of our previous studies have shown that the flavonoid monomer cyanidin-3-o-glucoside (C3G) can effectively inhibit primary human dermal fibroblast (HDF) oxidative damage and apoptosis caused by UVA radiation. Many flavonoids can regulate the level of autophagy. However, whether C3G inhibits UVA-induced oxidative damage to primary HDFs by regulating autophagy levels remains unclear. METHODS AND RESULTS: In this study, we used different doses (0-12 J/cm2 ) of UVA to irradiate cells and showed that the expression levels of autophagy-related gene 5 (Atg5) and microtubule-associated protein 1 light chain 3 (LC3)-II in primary HDFs first increased and then decreased. The expression of Atg5 and LC3-II was significantly decreased under 12 J/cm2 (light-damage model). C3G increased the levels of Atg5 and LC3-II. Primary HDFs were pretreated with C3G, followed by treatment with the autophagy inhibitor 3-methyladenine (3-MA) after 12 J/cm2 UVA irradiation. The inhibitory effects of C3G on morphological changes, oxidative damage, and apoptosis in primary HDFs induced by UVA were significantly decreased. CONCLUSION: C3G can inhibit UVA-induced damage to primary HDFs by inducing autophagy. These results provide a theoretical basis for the application of natural compounds to resist light damage to the skin in the future.


Asunto(s)
Antocianinas/farmacología , Autofagia , Dermis/metabolismo , Fibroblastos/metabolismo , Glucósidos/farmacología , Rayos Ultravioleta/efectos adversos , Regulación hacia Arriba , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Autofagia/efectos de los fármacos , Autofagia/efectos de la radiación , Células Cultivadas , Dermis/patología , Fibroblastos/patología , Humanos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/efectos de la radiación
3.
J Neuroimmune Pharmacol ; 16(3): 609-619, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32944864

RESUMEN

Astaxanthin (Ast) is an effective neuroprotective and antioxidant compound used to treat Alzheimer's disease (AD); however, the underlying in vivo molecular mechanisms remain unknown. In this study, we report that Ast can activate the mammalian target of rapamycin (mTOR) pathway in the 8-month-old APP/PS1 transgenic mouse model of AD. Our results suggest that Ast could ameliorate the cognitive defects in APP/PS1 mice by activating the mTOR pathway. Moreover, mTOR activation perturbed the mitochondrial dynamics, increased the synaptic plasticity after 21 days of treatment with Ast (10 mg/kg/day), and increased the expression of Aß-degrading enzymes, mitochondrial fusion, and synapse-associated proteins and decreased the expression of mitochondrial fission proteins. Intraperitoneal injection of the mTOR inhibitor, rapamycin, abolished the effects of Ast. In conclusion, Ast activates the mTOR pathway, which is necessary for mitochondrial dynamics and synaptic plasticity, leading to improved learning and memory. Our results support the use of Ast for the treatment of cognitive deficits. Graphical abstract In summary, Ast ameliorates cognitive deficits via facilitating the mTOR-dependent mitochondrial dynamics and synaptic damage, and reducing Aß accumulation. This model supports the use of Ast for the treatment of cognitive deficits.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Serina-Treonina Quinasas TOR , Enfermedad de Alzheimer/tratamiento farmacológico , Precursor de Proteína beta-Amiloide/genética , Animales , Cognición , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Presenilina-1/genética , Sirolimus , Xantófilas
4.
Neurobiol Aging ; 86: 81-91, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31837910

RESUMEN

A promising intervention for Alzheimer's disease (AD) would ideally target key pathological factors that are involved in AD pathogenesis. Soluble factors produced by engrafted mesenchymal stem cells (MSCs) mediate potential therapeutic effects in AD. However, these therapeutic benefits are largely hampered by the limited paracrine capacity of MSCs. In this study, we used adenovirus-mediated gene transduction of bone marrow MSCs to deliver exogenous proteins into the brain of APPswe/PSEN1dE9 (APP/PS1) mice in the early stage of impairment. We observed that engrafted MSCs carrying exogenous (C-X3-C motif) ligand 1 (CX3CL1) alone reduced the production of the inflammatory cytokine TNF-ɑ and improved synapse-related protein expression but not cognitive function. Transplantation of MSCs carrying CX3CL1 and Wnt3a (CX3CL1-Wnt3a-MSC) significantly attenuated the learning and memory impairment when compared with a control group. The improvement of neurobehavioral functions in APP/PS1 mice treated with CX3CL1-Wnt3a-MSC was related to the inhibition of microglial neurotoxicity and promotion of hippocampal neurogenesis. Transplantation of CX3CL1-Wnt3a-MSC also regulated phosphoinositide 3-kinase/activated protein kinase B (PI3K/AKT) signaling to inhibit the activity of glycogen synthase kinase 3 beta (GSK3ß). Taken together, these results indicate that the delivery of exogenous proteins via MSCs can modulate microglial function and enhance neurogenesis, thereby providing new insights into AD intervention.


Asunto(s)
Enfermedad de Alzheimer/terapia , Quimiocina CX3CL1/administración & dosificación , Trasplante de Células Madre Mesenquimatosas , Proteínas/administración & dosificación , Proteína Wnt3A/administración & dosificación , Proteína Wnt3A/metabolismo , Adenoviridae , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Animales , Células de la Médula Ósea , Quimiocina CX3CL1/metabolismo , Cognición , Modelos Animales de Enfermedad , Células Madre Mesenquimatosas/metabolismo , Ratones Transgénicos , Neurogénesis , Comunicación Paracrina , Transducción Genética , Factor de Necrosis Tumoral alfa/metabolismo
5.
Neurotox Res ; 38(1): 59-73, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32108297

RESUMEN

Oxidative stress is a potential pathological mechanism of Alzheimer's disease (AD). Berberine (BBR) can improve antioxidative capacity and inhibit Aß protein aggregation and tau protein hyperphosphorylation in AD, and stem cell therapy is also increasingly recognized as a therapy for AD. Bone marrow mesenchymal stem cells (BMSCs) have many advantages, as they exhibit antioxidant and anti-inflammatory activity and secrete a variety of neurotrophic factors, and play important roles in neurodegenerative disease treatment. In this study, we investigated the antioxidant effects of secretions from BMSCs pretreated with BBR on tert-butyl hydroperoxide (t-BHP)-damaged neurons. We demonstrated that BBR can enhance BMSC viability and the secretion of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), both of which are vital neurotrophic factors that maintain neuronal growth. Moreover, conditioned medium from BBR-treated BMSCs (BBR-BMSC-CM) reduced reactive oxygen species (ROS) production, attenuated a decrease in the mitochondrial membrane potential, and ameliorated neuronal apoptosis by decreasing levels of the apoptotic proteins Bax/Bcl-2, cytochrome c, and cleaved caspase-3/caspase-3. In addition, increased synaptophysin (SYP) and postsynaptic density protein 95 (PSD95) levels indicated that neuronal synaptic function was restored. Further study revealed that BBR-BMSC-CM activated the antioxidant proteins Keap1, Nrf2, and HO-1. In conclusion, our results showed that BBR-BMSC-CM attenuated apoptosis and oxidative damage in neurons by activating the Keap1-Nrf2-HO-1 signaling pathway. Taken together, these results also suggest BBR as a drug to stimulate the secretion of nutritional cytokines with the potential to treat AD.


Asunto(s)
Berberina/administración & dosificación , Células Madre Mesenquimatosas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Antioxidantes/administración & dosificación , Apoptosis/efectos de los fármacos , Células Cultivadas , Medios de Cultivo Condicionados , Ratones Endogámicos C57BL , Factores de Crecimiento Nervioso/metabolismo
6.
Oxid Med Cell Longev ; 2018: 5490218, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30140366

RESUMEN

Neural stem cells (NSCs) hold great potential for the treatment of Alzheimer's disease (AD) through both cellular replacement and their secretion of trophic factors. Lycopene is a potent ß-carotenoid antioxidant that has been shown to ameliorate oxidative damage in previous studies. However, it is unclear if lycopene can interact with NSCs to induce the secretion of growth factors, and whether pretreatment with lycopene will allow NSCs to secrete enough trophic factors to reduce oxidative damage to neurons. We pretreated cultured NSCs with lycopene, then applied the lycopene-treated-NSC-conditioned media (Ly-NSC-CM) to primary neuronal cultures exposed to tert-butyl hydroperoxide (t-BHP) to induce oxidative damage. We found that lycopene promoted the secretion of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF) from NSCs. In addition, Ly-NSC-CM attenuated oxidative stress and reduced t-BHP-induced cell apoptosis. We found an antiapoptotic effect related to inhibited expression of Bax/Bcl-2, cytochrome C, and cleaved caspase-3. Moreover, Ly-NSC-CM increased the levels of synaptic proteins, including synaptophysin (SYP) and postsynaptic density 95 (PSD-95), and activated the PI3K/Akt pathway in cultured neurons. Collectively, these data indicate that Ly-NSC-CM could protect neurons from t-BHP-induced oxidative damage.


Asunto(s)
Carotenoides/uso terapéutico , Células-Madre Neurales/metabolismo , Estrés Oxidativo/efectos de los fármacos , terc-Butilhidroperóxido/efectos adversos , Animales , Carotenoides/farmacología , Humanos , Licopeno , Ratones , terc-Butilhidroperóxido/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA