RESUMEN
The global outbreak of the mpox virus (MPXV) in 2022 highlights the urgent need for safer and more accessible new-generation vaccines. Here, we used a structure-guided multi-antigen fusion strategy to design a 'two-in-one' immunogen based on the single-chain dimeric MPXV extracellular enveloped virus antigen A35 bivalently fused with the intracellular mature virus antigen M1, called DAM. DAM preserved the natural epitope configuration of both components and showed stronger A35-specific and M1-specific antibody responses and in vivo protective efficacy against vaccinia virus (VACV) compared to co-immunization strategies. The MPXV-specific neutralizing antibodies elicited by DAM were 28 times higher than those induced by live VACV vaccine. Aluminum-adjuvanted DAM vaccines protected mice from a lethal VACV challenge with a safety profile, and pilot-scale production confirmed the high yield and purity of DAM. Thus, our study provides innovative insights and an immunogen candidate for the development of alternative vaccines against MPXV and other orthopoxviruses.
Asunto(s)
Monkeypox virus , Vacunas , Animales , Ratones , Proteínas del Envoltorio Viral , Anticuerpos Antivirales , Virus Vaccinia , Antígenos Virales , InmunidadRESUMEN
In the ongoing debates about eukaryogenesis-the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors-members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2-4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells.
Asunto(s)
Archaea , Eucariontes , Filogenia , Archaea/clasificación , Archaea/citología , Archaea/genética , Eucariontes/clasificación , Eucariontes/citología , Eucariontes/genética , Células Eucariotas/clasificación , Células Eucariotas/citología , Células Procariotas/clasificación , Células Procariotas/citología , Conjuntos de Datos como Asunto , Duplicación de Gen , Evolución MolecularRESUMEN
BACKGROUND: In June 2019, a patient presented with persistent fever and multiple organ dysfunction after a tick bite at a wetland park in Inner Mongolia. Next-generation sequencing in this patient revealed an infection with a previously unknown orthonairovirus, which we designated Wetland virus (WELV). METHODS: We conducted active hospital-based surveillance to determine the prevalence of WELV infection among febrile patients with a history of tick bites. Epidemiologic investigation was performed. The virus was isolated, and its infectivity and pathogenicity were investigated in animal models. RESULTS: WELV is a member of the orthonairovirus genus in the Nairoviridae family and is most closely related to the tickborne Hazara orthonairovirus genogroup. Acute WELV infection was identified in 17 patients from Inner Mongolia, Heilongjiang, Jilin, and Liaoning, China, by means of reverse-transcriptase-polymerase-chain-reaction assay. These patients presented with nonspecific symptoms, including fever, dizziness, headache, malaise, myalgia, arthritis, and back pain and less frequently with petechiae and localized lymphadenopathy. One patient had neurologic symptoms. Common laboratory findings were leukopenia, thrombocytopenia, and elevated d-dimer and lactate dehydrogenase levels. Serologic assessment of convalescent-stage samples obtained from 8 patients showed WELV-specific antibody titers that were 4 times as high as those in acute-phase samples. WELV RNA was detected in five tick species and in sheep, horses, pigs, and Transbaikal zokors (Myospalax psilurus) sampled in northeastern China. The virus that was isolated from the index patient and ticks showed cytopathic effects in human umbilical-vein endothelial cells. Intraperitoneal injection of the virus resulted in lethal infections in BALB/c, C57BL/6, and Kunming mice. The Haemaphysalis concinna tick is a possible vector that can transovarially transmit WELV. CONCLUSIONS: A newly discovered orthonairovirus was identified and shown to be associated with human febrile illnesses in northeastern China. (Funded by the National Natural Science Foundation of China and the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences.).
Asunto(s)
Fiebre , Nairovirus , Mordeduras de Garrapatas , Adulto , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven , Anticuerpos Antivirales/sangre , China/epidemiología , Fiebre/diagnóstico , Fiebre/epidemiología , Fiebre/virología , Nairovirus/genética , Nairovirus/aislamiento & purificación , Nairovirus/patogenicidad , Filogenia , Mordeduras de Garrapatas/complicaciones , Mordeduras de Garrapatas/virología , Prevalencia , Modelos Animales de Enfermedad , Ovinos , Caballos , Porcinos , Lactante , Preescolar , Niño , Adolescente , Anciano de 80 o más AñosRESUMEN
Piwi-interacting RNAs (piRNAs) engage Piwi proteins to suppress transposons and nonself nucleic acids and maintain genome integrity and are essential for fertility in a variety of organisms. In Caenorhabditis elegans, most piRNA precursors are transcribed from two genomic clusters that contain thousands of individual piRNA transcription units. While a few genes have been shown to be required for piRNA biogenesis, the mechanism of piRNA transcription remains elusive. Here we used functional proteomics approaches to identify an upstream sequence transcription complex (USTC) that is essential for piRNA biogenesis. The USTC contains piRNA silencing-defective 1 (PRDE-1), SNPC-4, twenty-one-U fouled-up 4 (TOFU-4), and TOFU-5. The USTC forms unique piRNA foci in germline nuclei and coats the piRNA cluster genomic loci. USTC factors associate with the Ruby motif just upstream of type I piRNA genes. USTC factors are also mutually dependent for binding to the piRNA clusters and forming the piRNA foci. Interestingly, USTC components bind differentially to piRNAs in the clusters and other noncoding RNA genes. These results reveal the USTC as a striking example of the repurposing of a general transcription factor complex to aid in genome defense against transposons.
Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica/genética , ARN Interferente Pequeño/genética , Secuencias de Aminoácidos , Animales , Proteínas de Caenorhabditis elegans/genética , Genoma de los Helmintos/genética , Unión Proteica , Proteómica , ARN Interferente Pequeño/biosíntesisRESUMEN
Bacteriophages typically have small genomes1 and depend on their bacterial hosts for replication2. Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is-to our knowledge-the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR-Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR-Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR-Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth's ecosystems.
Asunto(s)
Bacterias/virología , Bacteriófagos/clasificación , Bacteriófagos/genética , Planeta Tierra , Ecosistema , Genoma Viral/genética , Filogenia , Aminoacil-ARNt Sintetasas/genética , Animales , Bacterias/genética , Bacteriófagos/aislamiento & purificación , Bacteriófagos/metabolismo , Biodiversidad , Sistemas CRISPR-Cas/genética , Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Regulación Viral de la Expresión Génica , Especificidad del Huésped , Humanos , Lagos/virología , Anotación de Secuencia Molecular , Océanos y Mares , Profagos/genética , Biosíntesis de Proteínas , ARN de Transferencia/genética , Proteínas Ribosómicas/genética , Agua de Mar/virología , Microbiología del Suelo , Transcripción GenéticaRESUMEN
The availability of natural protein sequences synergized with generative AI provides new paradigms to engineer enzymes. Although active enzyme variants with numerous mutations have been designed using generative models, their performance often falls short of their wild type counterparts. Additionally, in practical applications, choosing fewer mutations that can rival the efficacy of extensive sequence alterations is usually more advantageous. Pinpointing beneficial single mutations continues to be a formidable task. In this study, using the generative maximum entropy model to analyze Renilla luciferase (RLuc) homologs, and in conjunction with biochemistry experiments, we demonstrated that natural evolutionary information could be used to predictively improve enzyme activity and stability by engineering the active center and protein scaffold, respectively. The success rate to improve either luciferase activity or stability of designed single mutants is ~50%. This finding highlights nature's ingenious approach to evolving proficient enzymes, wherein diverse evolutionary pressures are preferentially applied to distinct regions of the enzyme, ultimately culminating in an overall high performance. We also reveal an evolutionary preference in RLuc toward emitting blue light that holds advantages in terms of water penetration compared to other light spectra. Taken together, our approach facilitates navigation through enzyme sequence space and offers effective strategies for computer-aided rational enzyme engineering.
Asunto(s)
Luz , Mutación , Luciferasas de Renilla/genética , Luciferasas de Renilla/metabolismo , Estabilidad de EnzimasRESUMEN
Abscisic acid (ABA) is involved in salt and drought stress responses, but the underlying molecular mechanism remains unclear. Here, we demonstrated that the overexpression of MdMYB44-like, an R2R3-MYB transcription factor, significantly increases the salt and drought tolerance of transgenic apples and Arabidopsis. MdMYB44-like inhibits the transcription of MdPP2CA, which encodes a type 2C protein phosphatase that acts as a negative regulator in the ABA response, thereby enhancing ABA signaling-mediated salt and drought tolerance. Furthermore, we found that MdMYB44-like and MdPYL8, an ABA receptor, form a protein complex that further enhances the transcriptional inhibition of the MdPP2CA promoter by MdMYB44-like. Significantly, we discovered that MdPP2CA can interfere with the physical association between MdMYB44-like and MdPYL8 in the presence of ABA, partially blocking the inhibitory effect of the MdMYB44-like-MdPYL8 complex on the MdPP2CA promoter. Thus, MdMYB44-like, MdPYL8, and MdPP2CA form a regulatory loop that tightly modulates ABA signaling homeostasis under salt and drought stress. Our data reveal that MdMYB44-like precisely modulates ABA-mediated salt and drought tolerance in apples through the MdPYL8-MdPP2CA module.
Asunto(s)
Arabidopsis , Malus , Malus/genética , Malus/metabolismo , Resistencia a la Sequía , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Cloruro de Sodio/farmacología , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Estrés FisiológicoRESUMEN
Cyanobacteriota, the sole prokaryotes capable of oxygenic photosynthesis (OxyP), occupy a unique and pivotal role in Earth's history. While the notion that OxyP may have originated from Cyanobacteriota is widely accepted, its early evolution remains elusive. Here, by using both metagenomics and metatranscriptomics, we explore 36 metagenome-assembled genomes from hot spring ecosystems, belonging to two deep-branching cyanobacterial orders: Thermostichales and Gloeomargaritales. Functional investigation reveals that Thermostichales encode the crucial thylakoid membrane biogenesis protein, vesicle-inducing protein in plastids 1 (Vipp1). Based on the phylogenetic results, we infer that the evolution of the thylakoid membrane predates the divergence of Thermostichales from other cyanobacterial groups and that Thermostichales may be the most ancient lineage known to date to have inherited this feature from their common ancestor. Apart from OxyP, both lineages are potentially capable of sulfide-driven AnoxyP by linking sulfide oxidation to the photosynthetic electron transport chain. Unexpectedly, this AnoxyP capacity appears to be an acquired feature, as the key gene sqr was horizontally transferred from later-evolved cyanobacterial lineages. The presence of two D1 protein variants in Thermostichales suggests the functional flexibility of photosystems, ensuring their survival in fluctuating redox environments. Furthermore, all MAGs feature streamlined phycobilisomes with a preference for capturing longer-wavelength light, implying a unique evolutionary trajectory. Collectively, these results reveal the photosynthetic flexibility in these early-diverging cyanobacterial lineages, shedding new light on the early evolution of Cyanobacteriota and their photosynthetic processes.
Asunto(s)
Cianobacterias , Fotosíntesis , Fotosíntesis/genética , Cianobacterias/genética , Cianobacterias/metabolismo , Evolución Biológica , Filogenia , Oxígeno/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Evolución MolecularRESUMEN
The eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation on serine 209. In a recent study, by two rounds of TMT relative quantitative proteomics, we found that phosphorylated eIF4E (p-eIF4E) favors the translation of selected mRNAs, and the encoded proteins are mainly involved in ECM-receptor, focal adhesion, and PI3K-Akt signaling. The current paper is focused on the relationship between p-eIF4E and the downstream host cell proteins, and their presumed effect on efficient entry of PEDV. We found that the depletion of membrane-residential factor TSPAN3, CD63, and ITGB2 significantly inhibited viral invasion of PEDV, and reduced the entry of pseudotyped particles PEDV-pp, SARS-CoV-pp, and SARS-CoV-2-pp. The specific antibodies of TSPAN3, CD63, and ITGB2 blocked the adsorption of PEDV into host cells. Moreover, we detected that eIF4E phosphorylation was increased at 1 h after PEDV infection, in accordance with the expression of TSPAN3, CD63, and ITGB2. Similar trends appeared in the intestines of piglets in the early stage of PEDV challenge. Compared with Vero cells, S209A-Vero cells in which eIF4E cannot be phosphorylated showed a decrease of invading PEDV virions. MNK kinase inhibitor blocked PEDV invasion, as well as reduced the accumulation of TSPAN3, CD63, and ITGB2. Further study showed that the ERK-MNK pathway was responsible for the regulation of PEDV-induced early phosphorylation of eIF4E. This paper demonstrates for the first time the connections among p-eIF4E stimulation and membrane-residential host factors. Our findings also enrich the understanding of the biological function of phosphorylated eIF4E during the viral life cycle.IMPORTANCEThe eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation. In our previous study, several host factors susceptible to a high level of p-eIF4E were found to be conducive to viral infection by coronavirus PEDV. The current paper is focused on cell membrane-residential factors, which are involved in signal pathways that are sensitive to phosphorylated eIF4E. We found that the ERK-MNK pathway was activated, which resulted in the stimulation of phosphorylation of eIF4E in early PEDV infection. Phospho-eIF4E promoted the viral invasion of PEDV by upregulating the expression of host factors TSPAN3, CD63, and ITGB2 at the translation level rather than at the transcription level. Moreover, TSPAN3, CD63, or ITGB2 facilitates the efficient entry of coronavirus SARS-CoV, SARS-CoV-2, and HCoV-OC43. Our findings broaden our insights into the dynamic phosphorylation of eIF4E during the viral life cycle, and provide further evidence that phosphorylated eIF4E regulates selective translation of host mRNA.
Asunto(s)
Membrana Celular , Factor 4E Eucariótico de Iniciación , Virus de la Diarrea Epidémica Porcina , Biosíntesis de Proteínas , Internalización del Virus , Animales , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/virología , Chlorocebus aethiops , Factor 4E Eucariótico de Iniciación/química , Factor 4E Eucariótico de Iniciación/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Cadenas beta de Integrinas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Virus de la Diarrea Epidémica Porcina/fisiología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Porcinos , Tetraspaninas/metabolismo , Células VeroRESUMEN
Polyploidy is a significant mechanism in eukaryotic evolution and is particularly prevalent in the plant kingdom. However, our knowledge about this phenomenon and its effects on evolution remains limited. A major obstacle to the study of polyploidy is the great difficulty in untangling the origins of allopolyploids. Due to the drastic genome changes and the erosion of allopolyploidy signals caused by the combined effects of hybridization and complex post-polyploid diploidization processes, resolving the origins of allopolyploids has long been a challenging task. Here we revisit this issue with the interesting case of subtribe Tussilagininae (Asteraceae: Senecioneae) and by developing HomeoSorter, a new pipeline for network inferences by phasing homeologs to parental subgenomes. The pipeline is based on the basic idea of a previous study but with major changes to address the scaling problem and implement some new functions. With simulated data, we demonstrate that HomeoSorter works efficiently on genome-scale data and has high accuracy in identifying polyploid patterns and assigning homeologs. Using HomeoSorter, the maximum pseudo-likelihood model of Phylonet, and genome-scale data, we further address the complex origin of Tussilagininae, a speciose group (ca. 45 genera and 710 species) characterized by having high base chromosome numbers (mainly x = 30, 40). In particular, the inferred patterns are strongly supported by the chromosomal evidence. Tussilagininae is revealed to comprise two large groups with successive allopolyploid origins: Tussilagininae s.s. (mainly x = 30) and the Gynoxyoid group (x = 40). Two allopolyploidy events first give rise to Tussilagininae s.s., with the first event occurring between the ancestor of subtribe Senecioninae (x = 10) and a lineage (highly probably with x = 10) related to the Brachyglottis alliance, and the resulting hybrid lineage crossing with the ancestor of Chersodoma (x = 10) and leading to Tussilagininae s.s. Then, after early diversification, the Central American group (mainly x = 30) of Tussilagininae s.s., is involved in a third allopolyploidy event with, again, the Chersodoma lineage and produces the Gynoxyoid group. Our study highlights the value of HomeoSorter and the homeolog-sorting approach in polyploid phylogenetics. With rich species diversity and clear evolutionary patterns, Tussilagininae s.s. and the Gynoxyoid group are also excellent models for future investigations of polyploidy.
RESUMEN
BACKGROUND: IFIH1 variants have been reported to be associated with immune-related disorders with/without seizures. It is unknown whether IFIH1 variants are associated with common epilepsy without acquired causes and the mechanism underlying phenotypic variation remains elusive. METHODS: Trio-based whole-exome sequencing was performed on patients with febrile seizures or epilepsy with antecedent febrile seizures. Previously reported variants were systematically reviewed to investigate genotype-phenotype associations. RESULTS: Two de novo heterozygous and three biallelic missense variants were identified in five patients with generalised epilepsy with antecedent febrile seizures. The variants were predicted to be damaging by in silico tools and were associated with hydrogen bonding changes to neighbouring amino acids or decreased protein stability. Patients exhibited an early onset age and became seizure-free with favourable outcome. Further analysis revealed that de novo missense variants located in the Hel region resulted in seizures with multiple neurological abnormalities, while those in the pincer domain or C-terminal domain led to seizures with normal neurodevelopment, suggesting a sub-molecular effect. Biallelic missense variants, which were inherited from unaffected parents and presented low allele frequencies in general populations, were associated with seizures without neurological abnormalities. Truncation variants were related to refractory epilepsy and severe developmental delay, suggesting a genotype-phenotype correlation. IFIH1 is predominantly expressed in the neonatal stage and decreases dramatically in the adulthood, which is consistent with the early onset age and favourable outcome of the patients. CONCLUSIONS: IFIH1 variants are potentially associated with generalised epilepsy with antecedent febrile seizures. The sub-molecular implication and genotype-phenotype association help explain phenotype variations of IFIH1 variants.
Asunto(s)
Epilepsia Generalizada , Secuenciación del Exoma , Estudios de Asociación Genética , Helicasa Inducida por Interferón IFIH1 , Mutación Missense , Convulsiones Febriles , Humanos , Convulsiones Febriles/genética , Epilepsia Generalizada/genética , Masculino , Femenino , Helicasa Inducida por Interferón IFIH1/genética , Mutación Missense/genética , Preescolar , Lactante , Niño , Predisposición Genética a la Enfermedad , Adulto , FenotipoRESUMEN
Laboratory evolution combined with computational enzyme design provides the opportunity to generate novel biocatalysts. Nevertheless, it has been challenging to understand how laboratory evolution optimizes designer enzymes by introducing seemingly random mutations. A typical enzyme optimized with laboratory evolution is the abiological Kemp eliminase, initially designed by grafting active site residues into a natural protein scaffold. Here, we relate the catalytic power of laboratory-evolved Kemp eliminases to the statistical energy ([Formula: see text]) inferred from their natural homologous sequences using the maximum entropy model. The [Formula: see text] of designs generated by directed evolution is correlated with enhanced activity and reduced stability, thus displaying a stability-activity trade-off. In contrast, the [Formula: see text] for mutants in catalytic-active remote regions (in which remote residues are important for catalysis) is strongly anticorrelated with the activity. These findings provide an insight into the role of protein scaffolds in the adaption to new enzymatic functions. It also indicates that the valley in the [Formula: see text] landscape can guide enzyme design for abiological catalysis. Overall, the connection between laboratory and natural evolution contributes to understanding what is optimized in the laboratory and how new enzymatic function emerges in nature, and provides guidance for computational enzyme design.
Asunto(s)
Evolución Molecular Dirigida , Enzimas , Ingeniería de Proteínas , Catálisis , Dominio Catalítico , Entropía , Enzimas/metabolismo , MutaciónRESUMEN
A variety of signals, including inflammasome activation, trigger the formation of large transmembrane pores by gasdermin D (GSDMD). There are primarily two functions of the GSDMD pore, to drive lytic cell death, known as pyroptosis, and to permit the release of leaderless interleukin-1 (IL-1) family cytokines, a process that does not require pyroptosis. We are interested in the mechanism by which the GSDMD pore channels IL-1 release from living cells. Recent studies revealed that electrostatic interaction, in addition to cargo size, plays a critical role in GSDMD-dependent protein release. Here, we determined computationally that to enable electrostatic filtering against pro-IL-1ß, acidic lipids in the membrane need to effectively neutralize positive charges in the membrane-facing patches of the GSDMD pore. In addition, we predicted that salt has an attenuating effect on electrostatic filtering and then validated this prediction using a liposome leakage assay. A calibrated electrostatic screening factor is necessary to account for the experimental observations, suggesting that ion distribution within the pore may be different from the bulk solution. Our findings corroborate the electrostatic influence of IL-1 transport exerted by the GSDMD pore and reveal extrinsic factors, including lipid and salt, that affect the electrostatic environment.
Asunto(s)
Interleucina-1/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animales , Membrana Celular/metabolismo , Humanos , Inflamasomas/metabolismo , Ratones , Piroptosis/fisiología , Electricidad EstáticaRESUMEN
Although computational enzyme design is of great importance, the advances utilizing physics-based approaches have been slow, and further progress is urgently needed. One promising direction is using machine learning, but such strategies have not been established as effective tools for predicting the catalytic power of enzymes. Here, we show that the statistical energy inferred from homologous sequences with the maximum entropy (MaxEnt) principle significantly correlates with enzyme catalysis and stability at the active site region and the more distant region, respectively. This finding decodes enzyme architecture and offers a connection between enzyme evolution and the physical chemistry of enzyme catalysis, and it deepens our understanding of the stability-activity trade-off hypothesis for enzymes. Overall, the strong correlations found here provide a powerful way of guiding enzyme design.
RESUMEN
Nonradical Fenton-like catalysis offers opportunities to overcome the low efficiency and secondary pollution limitations of existing advanced oxidation decontamination technologies, but realizing this on transition metal spinel oxide catalysts remains challenging due to insufficient understanding of their catalytic mechanisms. Here, we explore the origins of catalytic selectivity of Fe-Mn spinel oxide and identify electron delocalization of the surface metal active site as the key driver of its nonradical catalysis. Through fine-tuning the crystal geometry to trigger Fe-Mn superexchange interaction at the spinel octahedra, ZnFeMnO4 with high-degree electron delocalization of the Mn-O unit was created to enable near 100% nonradical activation of peroxymonosulfate (PMS) at unprecedented utilization efficiency. The resulting surface-bound PMS* complex can efficiently oxidize electron-rich pollutants with extraordinary degradation activity, selectivity, and good environmental robustness to favor water decontamination applications. Our work provides a molecule-level understanding of the catalytic selectivity and bimetallic interactions of Fe-Mn spinel oxides, which may guide the design of low-cost spinel oxides for more selective and efficient decontamination applications.
Asunto(s)
Electrones , Óxidos , Catálisis , Óxido de Magnesio/química , Óxidos/química , Peróxidos/químicaRESUMEN
BACKGROUND: Coevolution between modern aphids and their primary obligate, bacterial endosymbiont, Buchnera aphidicola, has been previously reported at different classification levels based on molecular phylogenetic analyses. However, the Buchnera genome remains poorly understood within the Rhus gall aphids. RESULTS: We assembled the complete genome of the endosymbiont Buchnera in 16 aphid samples, representing 13 species in all six genera of Rhus gall aphids by shotgun genome skimming method. We compared the newly assembled genomes with those from GenBank to comprehensively investigate patterns of coevolution between the bacteria Buchnera and their aphid hosts. Buchnera genomes were mostly collinear, and the pan-genome contained 684 genes, in which the core genome contained 256 genes with some lineages having large numbers of tandem gene duplications. There has been substantial gene-loss in each Buchnera lineage. We also reconstructed the phylogeny for Buchnera and their host aphids, respectively, using 72 complete genomes of Buchnera, along with the complete mitochondrial genomes and three nuclear genes of 31 corresponding host aphid accessions. The cophylogenetic test demonstrated significant coevolution between these two partner groups at individual, species, generic, and tribal levels. CONCLUSIONS: Buchnera exhibits very high levels of genomic sequence divergence but relative stability in gene order. The relationship between the symbionts Buchnera and its aphid hosts shows a significant coevolutionary pattern and supports complexity of the obligate symbiotic relationship.
Asunto(s)
Áfidos , Buchnera , Genoma Bacteriano , Genómica , Filogenia , Simbiosis , Áfidos/microbiología , Áfidos/genética , Animales , Buchnera/genética , Buchnera/fisiología , Simbiosis/genética , Coevolución BiológicaRESUMEN
OBJECTIVE: Squalene epoxidase (SQLE) promotes metabolic dysfunction-associated steatohepatitis-associated hepatocellular carcinoma (MASH-HCC), but its role in modulating the tumour immune microenvironment in MASH-HCC remains unclear. DESIGN: We established hepatocyte-specific Sqle transgenic (tg) and knockout mice, which were subjected to a choline-deficient high-fat diet plus diethylnitrosamine to induce MASH-HCC. SQLE function was also determined in orthotopic and humanised mice. Immune landscape alterations of MASH-HCC mediated by SQLE were profiled by single-cell RNA sequencing and flow cytometry. RESULTS: Hepatocyte-specific Sqle tg mice exhibited a marked increase in MASH-HCC burden compared with wild-type littermates, together with decreased tumour-infiltrating functional IFN-γ+ and Granzyme B+ CD8+ T cells while enriching Arg-1+ myeloid-derived suppressor cells (MDSCs). Conversely, hepatocyte-specific Sqle knockout suppressed tumour growth with increased cytotoxic CD8+ T cells and reduced Arg-1+ MDSCs, inferring that SQLE promotes immunosuppression in MASH-HCC. Mechanistically, SQLE-driven cholesterol accumulation in tumour microenvironment underlies its effect on CD8+ T cells and MDSCs. SQLE and its metabolite, cholesterol, impaired CD8+ T cell activity by inducing mitochondrial dysfunction. Cholesterol depletion in vitro abolished the effect of SQLE-overexpressing MASH-HCC cell supernatant on CD8+ T cell suppression and MDSC activation, whereas cholesterol supplementation had contrasting functions on CD8+ T cells and MDSCs treated with SQLE-knockout supernatant. Targeting SQLE with genetic ablation or pharmacological inhibitor, terbinafine, rescued the efficacy of anti-PD-1 treatment in MASH-HCC models. CONCLUSION: SQLE induces an impaired antitumour response in MASH-HCC via attenuating CD8+ T cell function and augmenting immunosuppressive MDSCs. SQLE is a promising target in boosting anti-PD-1 immunotherapy for MASH-HCC.
RESUMEN
Anxiety is one of the most common withdrawal symptoms of methamphetamine (METH) abuse, which further drives relapse to drugs. Interpeduncular nucleus (IPN) has been implicated in anxiety-like behaviors and addiction, yet its role in METH-abstinence-induced anxiety remains unknown. Here, we found that prolonged abstinence from METH enhanced anxiety-like behaviors in male mice, accompanied by more excited IPN GABAergic neurons, as indicated by the increased c-fos expression and the enhanced neuronal excitability by electrophysiological recording in the GABAergic neurons. Using the designer receptors exclusively activated by designer drugs method, specific inhibition of IPN GABAergic neurons rescued the aberrant neuronal excitation of IPN GABAergic neurons and efficiently reduced anxiety-like behaviors, whereas it did not induce depression-like behaviors in male mice after prolonged abstinence from METH. These findings reveal that IPN GABAergic neurons should be a promising brain target to alleviate late withdrawal symptoms from METH with few side effects.SIGNIFICANCE STATEMENT Prolonged abstinence from METH triggers IPN GABAergic neurons and ultimately increases anxiety in male mice. Suppressing IPN GABAergic neurons rescues METH abstinence-induced aberrant neuronal excitation of IPN GABAergic neurons and efficiently reduces anxiety in mice.
Asunto(s)
Trastornos Relacionados con Anfetaminas , Núcleo Interpeduncular , Metanfetamina , Síndrome de Abstinencia a Sustancias , Ratones , Masculino , Animales , Metanfetamina/farmacología , Núcleo Interpeduncular/metabolismo , Ansiedad/metabolismo , Neuronas GABAérgicas/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Trastornos Relacionados con Anfetaminas/metabolismoRESUMEN
Senile osteoporosis increases fracture risks. Bone marrow stromal cells (BMSCs) are sensitive to aging. Deep insights into BMSCs aging are vital to elucidate the mechanisms underlying age-related bone loss. Recent advances showed that osteoporosis is associated with aberrant DNA methylation of many susceptible genes. Galectin-1 (Gal-1) has been proposed as a mediator of BMSCs functions. In our previous study, we showed that Gal-1 was downregulated in aged BMSCs and global deletion of Gal-1 in mice caused bone loss via impaired osteogenesis potential of BMSCs. Gal-1 promoter is featured by CpG islands. However, there are no reports concerning the DNA methylation status in Gal-1 promoter during osteoporosis. In the current study, we sought to investigate the role of DNA methylation in Gal-1 downregulation in aged BMSCs. The potential for anti-bone loss therapy based on modulating DNA methylation is explored. Our results showed that Dnmt3b-mediated Gal-1 promoter DNA hypermethylation plays an important role in Gal-1 downregulation in aged BMSCs, which inhibited ß-catenin binding on Gal-1 promoter. Bone loss of aged mice was alleviated in response to in vivo deletion of Dnmt3b from BMSCs. Finally, when bone marrow of young wild-type (WT) mice or young Dnmt3bPrx1-Cre mice was transplanted into aged WT mice, Gal-1 level in serum and trabecular bone mass were elevated in recipient aged WT mice. Our study will benefit for deeper insights into the regulation mechanisms of Gal-1 expression in BMSCs during osteoporosis development, and for the discovery of new therapeutic targets for osteoporosis via modulating DNA methylation status.NEW & NOTEWORTHY There is Dnmt3b-mediated DNA methylation in Gal-1 promoter in aged bone marrow stromal cell (BMSC). DNA methylation causes Gal-1 downregulation and osteogenesis attenuation of aged BMSC. DNA methylation blocks ß-catenin binding on Gal-1 promoter. Bone loss of aged mice is alleviated by in vivo deletion of Dnmt3b from BMSC.