Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 461
Filtrar
1.
Cell ; 161(6): 1437-52, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26046443

RESUMEN

Germ cells are vital for transmitting genetic information from one generation to the next and for maintaining the continuation of species. Here, we analyze the transcriptome of human primordial germ cells (PGCs) from the migrating stage to the gonadal stage at single-cell and single-base resolutions. Human PGCs show unique transcription patterns involving the simultaneous expression of both pluripotency genes and germline-specific genes, with a subset of them displaying developmental-stage-specific features. Furthermore, we analyze the DNA methylome of human PGCs and find global demethylation of their genomes. Approximately 10 to 11 weeks after gestation, the PGCs are nearly devoid of any DNA methylation, with only 7.8% and 6.0% of the median methylation levels in male and female PGCs, respectively. Our work paves the way toward deciphering the complex epigenetic reprogramming of the germline with the aim of restoring totipotency in fertilized oocytes.


Asunto(s)
Metilación de ADN , Células Germinativas/metabolismo , Transcriptoma , Movimiento Celular , Cromosomas Humanos X , Análisis por Conglomerados , Embrión de Mamíferos/metabolismo , Femenino , Histonas/metabolismo , Humanos , Masculino , Análisis de Componente Principal , Factores de Transcripción SOX/metabolismo
2.
Cell ; 157(4): 771-3, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24813603

RESUMEN

Techniques for profiling individual cells are rapidly advancing and are providing an unprecedented opportunity for studying the genetic regulation of development and disease. In this issue, Durruthy-Durruthy et al. analyze gene expression at the single-cell level for a simple but highly organized three-dimensional structure, the mouse otocyst.


Asunto(s)
Oído Interno/citología , Oído Interno/embriología , Células-Madre Neurales/citología , Análisis de la Célula Individual , Transcriptoma , Animales , Femenino , Masculino
3.
Mol Cell ; 76(2): 320-328, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31563431

RESUMEN

Germline cells are the beginning of new individuals in multicellular animals, including humans. Our understanding of these cell types is limited by the difficulty of analyzing the precious and heterogeneous germline tissue samples. The rapid development of single-cell sequencing technologies provides a chance for comprehensive profiling of the omics dynamics of human germline development. In this review, we discuss progress in analyzing the development of human germline cells, including preimplantation and implantation embryos, fetal germ cells (FGCs), and adult spermatogenesis by single-cell transcriptome and epigenome sequencing technologies.


Asunto(s)
Células Madre Fetales/fisiología , Regulación del Desarrollo de la Expresión Génica , Óvulo/fisiología , Análisis de Secuencia de ADN , Análisis de la Célula Individual/métodos , Espermatozoides/fisiología , Blastocisto/fisiología , Ensamble y Desensamble de Cromatina , Metilación de ADN , Desarrollo Embrionario/genética , Epigénesis Genética , Femenino , Genotipo , Humanos , Masculino , Fenotipo , Espermatogénesis/genética
4.
Nat Methods ; 20(10): 1493-1505, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37640936

RESUMEN

The high-order three-dimensional (3D) organization of regulatory genomic elements provides a topological basis for gene regulation, but it remains unclear how multiple regulatory elements across the mammalian genome interact within an individual cell. To address this, herein, we developed scNanoHi-C, which applies Nanopore long-read sequencing to explore genome-wide proximal high-order chromatin contacts within individual cells. We show that scNanoHi-C can reliably and effectively profile 3D chromatin structures and distinguish structure subtypes among individual cells. This method could also be used to detect genomic variations, including copy-number variations and structural variations, as well as to scaffold the de novo assembly of single-cell genomes. Notably, our results suggest that extensive high-order chromatin structures exist in active chromatin regions across the genome, and multiway interactions between enhancers and their target promoters were systematically identified within individual cells. Altogether, scNanoHi-C offers new opportunities to investigate high-order 3D genome structures at the single-cell level.

5.
Crit Rev Immunol ; 44(5): 113-122, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38618733

RESUMEN

Pneumonia is a common infection in elderly patients. We explored the correlations of serum interleukin-6 (IL-6) and serum ferritin (SF) levels with immune function/disease severity in elderly pneumonia patients. Subjects were allocated into the mild pneumonia (MP), severe pneumonia (SP), and normal groups, with their age/sex/body mass index/ disease course and severity/blood pressure/comorbidities/medications/prealbumin (PA)/albumin (ALB)/C-reactive protein (CRP)/procalcitonin (PCT)/smoking status documented. The disease severity was evaluated by pneumonia severity index (PSI). T helper 17 (Th17)/regulatory T (Treg) cell ratios and IL-6/SF/immunoglobulin G (IgG)/Th17 cytokine (IL-21)/Treg cytokine (IL-10)/PA/ALB levels were assessed. The correlations between these indexes/independent risk factors in elderly patients with severe pneumonia were evaluated. There were differences in smoking and CRP/PCT/ALB/PA levels among the three groups, but only CRP/ALB were different between the MP/SP groups. Pneumonia patients exhibited up-regulated Th17 cell ratio and serum IL-6/SF/IL-21/IL-10/IgG levels, down-regulated Treg cell ratio, and greater differences were noted in severe cases. Serum IL-6/SF levels were positively correlated with disease severity, immune function, and IL-21/IL-10/IgG levels. Collectively, serum IL-6 and SF levels in elderly pneumonia patients were conspicuously positively correlated with disease severity and IL-21/IL-10/IgG levels. CRP, ALB, IL-6 and SF levels were independent risk factors for severe pneumonia in elderly patients.


Asunto(s)
Interleucina-10 , Interleucina-6 , Anciano , Humanos , Citocinas , Ferritinas , Inmunoglobulina G , Factores de Riesgo
6.
Nature ; 572(7771): 660-664, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31435013

RESUMEN

Implantation is a milestone event during mammalian embryogenesis. Implantation failure is a considerable cause of early pregnancy loss in humans1. Owing to the difficulty of obtaining human embryos early after implantation in vivo, it remains unclear how the gene regulatory network and epigenetic mechanisms control the implantation process. Here, by combining an in vitro culture system for the development human embryos after implantation and single-cell multi-omics sequencing technologies, more than 8,000 individual cells from 65 human peri-implantation embryos were systematically analysed. Unsupervised dimensionality reduction and clustering algorithms of the transcriptome data show stepwise implantation routes for the epiblast, primitive endoderm and trophectoderm lineages, suggesting robust preparation for the proper establishment of a mother-to-offspring connection during implantation. Female embryos showed initiation of random X chromosome inactivation based on analysis of parental allele-specific expression of X-chromosome-linked genes during implantation. Notably, using single-cell triple omics sequencing analysis, the re-methylation of the genome in cells from the primitive endoderm lineage was shown to be much slower than in cells of both epiblast and trophectoderm lineages during the implantation process, which indicates that there are distinct re-establishment features in the DNA methylome of the epiblast and primitive endoderm-even though both lineages are derived from the inner cell mass. Collectively, our work provides insights into the complex molecular mechanisms that regulate the implantation of human embryos, and helps to advance future efforts to understanding early embryonic development and reproductive medicine.


Asunto(s)
Metilación de ADN , Desarrollo Embrionario/genética , Epigenoma , Transcriptoma/genética , Linaje de la Célula/genética , Cromosomas Humanos X/genética , Variaciones en el Número de Copia de ADN/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , RNA-Seq , Análisis de la Célula Individual , Inactivación del Cromosoma X/genética
7.
Nucleic Acids Res ; 51(15): 8020-8034, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37351613

RESUMEN

Although localized haploid phasing can be achieved using long read genome sequencing without parental data, reliable chromosome-scale phasing remains a great challenge. Given that sperm is a natural haploid cell, single-sperm genome sequencing can provide a chromosome-wide phase signal. Due to the limitation of read length, current short-read-based single-sperm genome sequencing methods can only achieve SNP haplotyping and come with difficulties in detecting and haplotyping structural variations (SVs) in complex genomic regions. To overcome these limitations, we developed a long-read-based single-sperm genome sequencing method and a corresponding data analysis pipeline that can accurately identify crossover events and chromosomal level aneuploidies in single sperm and efficiently detect SVs within individual sperm cells. Importantly, without parental genome information, our method can accurately conduct de novo phasing of heterozygous SVs as well as SNPs from male individuals at the whole chromosome scale. The accuracy for phasing of SVs was as high as 98.59% using 100 single sperm cells, and the accuracy for phasing of SNPs was as high as 99.95%. Additionally, our method reliably enabled deduction of the repeat expansions of haplotype-resolved STRs/VNTRs in single sperm cells. Our method provides a new opportunity for studying haplotype-related genetics in mammals.


Asunto(s)
Polimorfismo de Nucleótido Simple , Semen , Animales , Masculino , Humanos , Haplotipos , Cromosomas , Espermatozoides , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Genoma Humano , Análisis de Secuencia de ADN/métodos , Mamíferos/genética
8.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34553223

RESUMEN

With the rapid development of single-cell sequencing techniques, several large-scale cell atlas projects have been launched across the world. However, it is still challenging to integrate single-cell RNA-seq (scRNA-seq) datasets with diverse tissue sources, developmental stages and/or few overlaps, due to the ambiguity in determining the batch information, which is particularly important for current batch-effect correction methods. Here, we present SCORE, a simple network-based integration methodology, which incorporates curated molecular network features to infer cellular states and generate a unified workflow for integrating scRNA-seq datasets. Validating on real single-cell datasets, we showed that regardless of batch information, SCORE outperforms existing methods in accuracy, robustness, scalability and data integration.


Asunto(s)
Análisis de la Célula Individual , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Secuenciación del Exoma
9.
BMC Cancer ; 24(1): 716, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862951

RESUMEN

BACKGROUND: To compare the diagnostic performance of the Node-RADS scoring system and lymph node (LN) size in preoperative LN assessment for rectal cancer (RC), and to investigate whether the selection of size as the primary criterion whereas morphology as the secondary criterion for LNs can be considered the preferred method for clinical assessment. METHODS: Preoperative CT data of 146 RC patients treated with radical resection surgery were retrospectively analyzed. The Node-RADS score and short-axis diameter of size-prioritized LNs and the morphology-prioritized LNs were obtained. The correlations of Node-RADS score to the pN stage, LNM number and lymph node ratio (LNR) were investigated. The performances on assessing pathological lymph node metastasis were compared between Node-RADS score and short-axis diameter. A nomogram combined the Node-RADS score and clinical features was also evaluated. RESULTS: Node-RADS score showed significant correlation with pN stage, LNM number and LNR (Node-RADS of size-prioritized LN: r = 0.600, 0.592, and 0.606; Node-RADS of morphology-prioritized LN: r = 0.547, 0.538, and 0.527; Node-RADSmax: r = 0.612, 0.604, and 0.610; all p < 0.001). For size-prioritized LN, Node-RADS achieved an AUC of 0.826, significantly superior to short-axis diameter (0.826 vs. 0.743, p = 0.009). For morphology-prioritized LN, Node-RADS exhibited an AUC of 0.758, slightly better than short-axis diameter (0.758 vs. 0.718, p = 0.098). The Node-RADS score of size-prioritized LN was significantly better than that of morphology-prioritized LN (0.826 vs. 0.758, p = 0.038). The nomogram achieved the best diagnostic performance (AUC = 0.861) than all the other assessment methods (p < 0.05). CONCLUSIONS: The Node-RADS scoring system outperforms the short-axis diameter in predicting lymph node metastasis in RC. Size-prioritized LN demonstrates superior predictive efficacy compared to morphology-prioritized LN. The nomogram combined the Node-RADS score of size-prioritized LN with clinical features exhibits the best diagnostic performance. Moreover, a clear relationship was demonstrated between the Node-RADS score and the quantity-dependent pathological characteristics of LNM.


Asunto(s)
Ganglios Linfáticos , Metástasis Linfática , Neoplasias del Recto , Tomografía Computarizada por Rayos X , Humanos , Neoplasias del Recto/patología , Neoplasias del Recto/diagnóstico por imagen , Neoplasias del Recto/cirugía , Masculino , Femenino , Persona de Mediana Edad , Ganglios Linfáticos/patología , Ganglios Linfáticos/diagnóstico por imagen , Metástasis Linfática/diagnóstico por imagen , Metástasis Linfática/patología , Estudios Retrospectivos , Anciano , Tomografía Computarizada por Rayos X/métodos , Nomogramas , Adulto , Estadificación de Neoplasias , Anciano de 80 o más Años , Escisión del Ganglio Linfático
10.
Mol Psychiatry ; 28(4): 1611-1621, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36914812

RESUMEN

Clinical and animal studies have shown that gut microbiome disturbances can affect neural function and behaviors via the microbiota-gut-brain axis, and may be implicated in the pathogenesis of several brain diseases. However, exactly how the gut microbiome modulates nervous system activity remains obscure. Here, using a single-cell nucleus sequencing approach, we sought to characterize the cell type-specific transcriptomic changes in the prefrontal cortex and hippocampus derived from germ-free (GF), specific pathogen free, and colonized-GF mice. We found that the absence of gut microbiota resulted in cell-specific transcriptomic changes. Furthermore, microglia transcriptomes were preferentially influenced, which could be effectively reversed by microbial colonization. Significantly, the gut microbiome modulated the mutual transformation of microglial subpopulations in the two regions. Cross-species analysis showed that the transcriptome changes of these microglial subpopulations were mainly associated with Alzheimer's disease (AD) and major depressive disorder (MDD), which were further supported by animal behavioral tests. Our findings demonstrate that gut microbiota mainly modulate the mutual transformation of microglial subtypes, which may lead to new insights into the pathogenesis of AD and MDD.


Asunto(s)
Enfermedad de Alzheimer , Trastorno Depresivo Mayor , Microbioma Gastrointestinal , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Microglía , Depresión , Corteza Prefrontal
11.
PLoS Biol ; 19(5): e3001229, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34003819

RESUMEN

DNA methylation, chromatin accessibility, and gene expression represent different levels information in biological process, but a comprehensive multiomics analysis of the mammalian heart is lacking. Here, we applied nucleosome occupancy and methylome sequencing, which detected DNA methylation and chromatin accessibility simultaneously, as well as RNA-seq, for multiomics analysis of the 4 chambers of adult and fetal human hearts, and adult mouse hearts. Our results showed conserved region-specific patterns in the mammalian heart at transcriptome and DNA methylation level. Adult and fetal human hearts showed distinct features in DNA methylome, chromatin accessibility, and transcriptome. Novel long noncoding RNAs were identified in the human heart, and the gene expression profiles of major cardiovascular diseases associated genes were displayed. Furthermore, cross-species comparisons revealed human-specific and mouse-specific differentially expressed genes between the atria and ventricles. We also reported the relationship among multiomics and found there was a bell-shaped relationship between gene-body methylation and expression in the human heart. In general, our study provided comprehensive spatiotemporal and evolutionary insights into the regulation of gene expression in the heart.


Asunto(s)
Corazón/crecimiento & desarrollo , Corazón/fisiología , Animales , Cromatina/metabolismo , Islas de CpG/genética , ADN/genética , Metilación de ADN/genética , Epigénesis Genética/genética , Epigenómica/métodos , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Ventrículos Cardíacos/crecimiento & desarrollo , Ventrículos Cardíacos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Ratones , Nucleosomas/metabolismo , Especificidad de Órganos/genética , ARN Largo no Codificante/metabolismo , Especificidad de la Especie , Transcriptoma/genética
12.
Inorg Chem ; 63(25): 11768-11778, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38864539

RESUMEN

The exploration of low-cost, efficient, environmentally safe, and selective catalysts for the activation of carbon-halogen bonds has become an important and challenging topic in modern chemistry. With the help of density functional theory (DFT), it is found that phenyl bromide (PhBr) can be efficiently chemisorbed by the Al12M (M = Be, Al, C, and P) superatoms via forming highly polarized Al-Br covalent bonds, where the C-Br bonds of PhBr can be effectively activated through the electron transfer from Al12M. The different electronic structures of these four Al12M superatoms pose a substantial effect on their performances on the activation of PhBr and the catalytic mechanisms of the Suzuki-Miyaura (SM) reaction. Among them, the alkali-metal-like superatom Al12P exhibits the best performance for the activation of PhBr. In particular, Al13 and Al12P with open-shell electronic structures exhibit catalytic performances comparable to those of previously reported catalysts for this coupling reaction. Hence, it is highly expected that Al13 and Al12P could be used as novel superatom catalysts for C-C coupling reactions and, therefore, open up new possibilities to use nonprecious superatoms in catalyzing the activation and transformation of carbon-halogen bonds.

13.
J Nanobiotechnology ; 22(1): 156, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589867

RESUMEN

Immunotherapy has revolutionized the treatment of cancer. However, its efficacy remains to be optimized. There are at least two major challenges in effectively eradicating cancer cells by immunotherapy. Firstly, cancer cells evade immune cell killing by down-regulating cell surface immune sensors. Secondly, immune cell dysfunction impairs their ability to execute anti-cancer functions. Radiotherapy, one of the cornerstones of cancer treatment, has the potential to enhance the immunogenicity of cancer cells and trigger an anti-tumor immune response. Inspired by this, we fabricate biofunctionalized liposome-like nanovesicles (BLNs) by exposing irradiated-cancer cells to ethanol, of which ethanol serves as a surfactant, inducing cancer cells pyroptosis-like cell death and facilitating nanovesicles shedding from cancer cell membrane. These BLNs are meticulously designed to disrupt both of the aforementioned mechanisms. On one hand, BLNs up-regulate the expression of calreticulin, an "eat me" signal on the surface of cancer cells, thus promoting macrophage phagocytosis of cancer cells. Additionally, BLNs are able to reprogram M2-like macrophages into an anti-cancer M1-like phenotype. Using a mouse model of malignant pleural effusion (MPE), an advanced-stage and immunotherapy-resistant cancer model, we demonstrate that BLNs significantly increase T cell infiltration and exhibit an ablative effect against MPE. When combined with PD-1 inhibitor (α-PD-1), we achieve a remarkable 63.6% cure rate (7 out of 11) among mice with MPE, while also inducing immunological memory effects. This work therefore introduces a unique strategy for overcoming immunotherapy resistance.


Asunto(s)
Liposomas , Neoplasias , Humanos , Liposomas/metabolismo , Neoplasias/radioterapia , Neoplasias/metabolismo , Macrófagos/metabolismo , Inmunoterapia , Etanol/metabolismo , Línea Celular Tumoral
14.
J Nanobiotechnology ; 22(1): 361, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38910236

RESUMEN

Recently, environmental temperature has been shown to regulate bone homeostasis. However, the mechanisms by which cold exposure affects bone mass remain unclear. In our present study, we observed that exposure to cold temperature (CT) decreased bone mass and quality in mice. Furthermore, a transplant of exosomes derived from the plasma of mice exposed to cold temperature (CT-EXO) can also impair the osteogenic differentiation of BMSCs and decrease bone mass by inhibiting autophagic activity. Rapamycin, a potent inducer of autophagy, can reverse cold exposure or CT-EXO-induced bone loss. Microarray sequencing revealed that cold exposure increases the miR-25-3p level in CT-EXO. Mechanistic studies showed that miR-25-3p can inhibit the osteogenic differentiation and autophagic activity of BMSCs. It is shown that inhibition of exosomes release or downregulation of miR-25-3p level can suppress CT-induced bone loss. This study identifies that CT-EXO mediates CT-induced osteoporotic effects through miR-25-3p by inhibiting autophagy via targeting SATB2, presenting a novel mechanism underlying the effect of cold temperature on bone mass.


Asunto(s)
Autofagia , Frío , Exosomas , Ratones Endogámicos C57BL , MicroARNs , Osteogénesis , Animales , Autofagia/efectos de los fármacos , Ratones , Exosomas/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Osteogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Osteoporosis/patología , Diferenciación Celular/efectos de los fármacos , Huesos/metabolismo , Femenino , Densidad Ósea , Sirolimus/farmacología
15.
Cell Mol Life Sci ; 80(2): 57, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36729271

RESUMEN

Gastric cancers are highly heterogeneous malignant tumors. To reveal the relationship between differentiation status of cancer cells and tumor immune microenvironments in gastric cancer, single-cell RNA-sequencing was performed on normal mucosa tissue, differentiated gastric cancer (DGC) tissue, poorly differentiated gastric cancer (PDGC) tissue and neuroendocrine carcinoma (NEC) tissue sampled from surgically resected gastric cancer specimens. We identified the signature genes for both DGC and PDGC, and found that signature genes of PDGC strongly enriched in the epithelial-mesenchymal transition (EMT) program. Furthermore, we found that DGC tends to be immune-rich type whereas PDGC tends to be immune-poor type defined according to the density of tumor-infiltrating CD8+ T cells. Additionally, interferon alpha and gamma responding genes were specifically expressed in the immune-rich malignant cells compared with immune-poor malignant cells. Through analyzing the mixed adenoneuroendocrine carcinoma, we identified intermediate state malignant cells during the trans-differentiation process from DGC to NEC, which showed double-negative expressions of both DGC marker genes and NEC marker genes. Interferon-related pathways were gradually downregulated along the DGC to NEC trans-differentiation path, which was accompanied by reduced CD8+ cytotoxic T-cell infiltration. In summary, molecular features of both malignant cells and immune microenvironment cells of DGC, PDGC and NEC were systematically revealed, which may partially explain the strong tumor heterogeneities of gastric cancer. Especially along the DGC to NEC trans-differentiation path, immune-evasion was gradually enhanced with the decreasing activities of interferon pathway responses in malignant cells.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Linfocitos T CD8-positivos/metabolismo , Análisis de Expresión Génica de una Sola Célula , Diferenciación Celular/genética , Interferones/genética , Microambiente Tumoral/genética
16.
Nucleic Acids Res ; 50(13): 7479-7492, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35819189

RESUMEN

Genome assembly has been benefited from long-read sequencing technologies with higher accuracy and higher continuity. However, most human genome assembly require large amount of DNAs from homogeneous cell lines without keeping cell heterogeneities, since cell heterogeneity could profoundly affect haplotype assembly results. Herein, using single-cell genome long-read sequencing technology (SMOOTH-seq), we have sequenced K562 and HG002 cells on PacBio HiFi and Oxford Nanopore Technologies (ONT) platforms and conducted de novo genome assembly. For the first time, we have completed the human genome assembly with high continuity (with NG50 of ∼2 Mb using 95 individual K562 cells) at single-cell levels, and explored the impact of different assemblers and sequencing strategies on genome assembly. With sequencing data from 30 diploid individual HG002 cells of relatively high genome coverage (average coverage ∼41.7%) on ONT platform, the NG50 can reach over 1.3 Mb. Furthermore, with the assembled genome from K562 single-cell dataset, more complete and accurate set of insertion events and complex structural variations could be identified. This study opened a new chapter on the practice of single-cell genome de novo assembly.


Asunto(s)
Genoma Humano , Nanoporos , Mapeo Cromosómico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Análisis de Secuencia de ADN/métodos
17.
Gen Physiol Biophys ; 43(1): 37-48, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38312033

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a highly prevalent and fatal disease worldwide. The function of club cells, which are considered progenitor/stem cells of the bronchial epithelium, and their secreted protein CC16, have been proposed as potential targets for COPD treatment. This study aimed to investigate the role of the TGF-ß1/ALK5 signaling pathway in club cell function and COPD progression. C57BL/6J mice were divided into Normal group (exposed to fresh air) and COPD group (exposed to incremental cigarette smoke extract for 12 weeks). The COPD mice were further divided into COPD group, DMSO group, and LY2109761 group (injected with 150 mg/kg LY2109761, a TGF-ß1 inhibitor). Tissue staining was used to assess lung damage, and the expression of CC16 was measured. The levels of inflammatory factors and DNA damage-related indicators were also measured. The involvement of the MEK/ERK signaling pathway was determined. COPD mice exhibited severe lung damage and impaired club cell function. Activation of the TGF-ß1/ALK5 and MEK/ERK pathways were observed in COPD mice. However, administration of LY2109761 in COPD mice inactivated the TGF-ß1/ALK5 and MEK/ERK pathways. Administration of LY2109761 also alleviated pulmonary fibrosis, downregulated the levels cleaved caspase-3, IL-4, IL-5, IL-13, IL-12, and IFN-γ, and limited the phosphorylation of Chk1. Moreover, LY2109761 enhanced CC16 expression and decreased lung cell apoptosis. Inactivation of the TGF-ß1/ALK5 axis inhibits the MEK/ERK signaling pathway, enhances club cell function, and alleviates lung tissue damage. These findings suggest that TGF-ß1 is a potential therapeutic target for COPD.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Enfermedad Pulmonar Obstructiva Crónica , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal , Pulmón , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos
18.
Biophys J ; 122(18): 3704-3721, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37301982

RESUMEN

Adherent filopodia are elongated finger-like membrane protrusions, extending from the edges of diverse cell types and participating in cell adhesion, spreading, migration, and environmental sensing. The formation and elongation of filopodia are driven by the polymerization of parallel actin filaments, comprising the filopodia cytoskeletal core. Here, we report that adherent filopodia, formed during the spreading of cultured cells on galectin-8-coated substrates, tend to change the direction of their extension in a chiral fashion, acquiring a left-bent shape. Cryoelectron tomography examination indicated that turning of the filopodia tip to the left is accompanied by the displacement of the actin core bundle to the right of the filopodia midline. Reduction of the adhesion to galectin-8 by treatment with thiodigalactoside abolished this filopodia chirality. By modulating the expression of a variety of actin-associated filopodia proteins, we identified myosin-X and formin DAAM1 as major filopodia chirality promoting factors. Formin mDia1, actin filament elongation factor VASP, and actin filament cross-linker fascin were also shown to be involved. Thus, the simple actin cytoskeleton of filopodia, together with a small number of associated proteins are sufficient to drive a complex navigation process, manifested by the development of left-right asymmetry in these cellular protrusions.


Asunto(s)
Actinas , Seudópodos , Actinas/metabolismo , Forminas/metabolismo , Seudópodos/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto/metabolismo
19.
J Cell Physiol ; 238(8): 1788-1807, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37565630

RESUMEN

Despite the initiation of tumor arises from tumorigenic transformation signaling in cancer cells, cancer cell survival, invasion, and metastasis also require a dynamic and reciprocal association with extracellular signaling from tumor microenvironment (TME). Primary cilia are the antenna-like structure that mediate signaling sensation and transduction in different tissues and cells. Recent studies have started to uncover that the heterogeneous ciliation in cancer cells and cells from the TME in tumor growth impels asymmetric paracellular signaling in the TME, indicating the essential functions of primary cilia in homeostasis maintenance of both cancer cells and the TME. In this review, we discussed recent advances in the structure and assembly of primary cilia, and the role of primary cilia in tumor and TME formation, as well as the therapeutic potentials that target ciliary dynamics and signaling from the cells in different tumors and the TME.


Asunto(s)
Cilios , Neoplasias , Humanos , Cilios/patología , Microambiente Tumoral , Neoplasias/patología , Transducción de Señal
20.
Lab Invest ; 103(3): 100009, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36925200

RESUMEN

Kidney repair after injury involves the cross-talk of injured kidney tubules with interstitial fibroblasts and immune cells. Although tubular cells produce multiple cytokines, the role and regulation of specific cytokines in kidney repair are largely undefined. In this study, we detected the induction of fibroblast growth factor 2 (FGF2) in mouse kidneys after repeated low-dose cisplatin (RLDC) treatment and in RLDC-treated renal proximal tubule cells in vitro. We further detected FGF2 in the culture medium of RLDC-treated renal tubular cells but not in the medium of control cells, indicating that RLDC induces FGF2 expression and secretion. Compared with the medium of control cells, the medium of RLDC-treated renal tubular cells was twice as effective in promoting fibroblast proliferation. Remarkably, the proliferative effect of the RLDC-treated cell medium was diminished by FGF2-neutralizing antibodies. In addition, the RLDC-treated cell medium induced the expression of fibrosis-related proteins, which was partially suppressed by FGF2-neutralizing antibodies. In mice, FGF2 deficiency partially prevented RLDC-induced decline in kidney function, loss of kidney weight, renal fibrosis, and inflammation. Together, these results indicate that FGF2 is produced by renal tubular cells after kidney injury and acts as an important paracrine factor in maladaptive kidney repair and disease progression.


Asunto(s)
Cisplatino , Factor 2 de Crecimiento de Fibroblastos , Ratones , Animales , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Cisplatino/farmacología , Riñón/patología , Túbulos Renales/metabolismo , Fibrosis , Citocinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA