Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(27): e2308283, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38412406

RESUMEN

Unsatisfactory performance of ethanol oxidation reaction (EOR) catalysts hinders the application of direct ethanol fuel cells (DEFCs), while traditional alloy catalysts (like PdPt) is cursed by Sabatier principle due to countable active site types. However, bacterial soluble extracellular polymeric substances (s-EPS) owning abundent functional groups may help breacking through it by contrusting different active sites on PdPt and inducing them to play synergy effect, which is called interface engineering. Using s-EPS to engineer catalysts is more green and consumes lower energy compared to chemical reagents. Herein, PdPt alloy nanoparticles (≈2.1 nm) are successfully in situ synthesized by/on s-EPS of Bacillus megaterium, an ex-holotype. Tryptophan residuals are proved as the main reductant. In EOR, PdPt@s-EPS shows higher activity (3.89 mA cm-2) than Pd@s-EPS, Pt@s-EPS, Pt/C and most reported akin catalysts. Its stability and durability are excellent, too. DFT modelling further demonstrates that, interface engineering by s-EPS breaks through Sabatier principle, by the synergy of diverse sites owning different degrees of d-p orbital hybridization. This work not only makes DEFCs closer to practice, but provides a facile and green strategy to design more catalysts.

2.
J Colloid Interface Sci ; 585: 368-375, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33307305

RESUMEN

Although bio-inspired designs for ultrasmall metal nanoparticles (NPs) are likely to play an important role in exploring future heterogeneous catalysis materials, synthesizing these structures while retaining surface activity and avoiding aggregation is challenging. Inspired by the Morchella with the spatially and well-organized porous structures, we proposed a biological strategy to yield NPs with ultrasmall and highly dispersed while maintaining high catalytic activity through surfactin self-assembly. Here, multifunctional Morchella-like biological pores (MBP) nanomaterials (~28 nm) with reduction and encapsulation has been synthesized by surfactin self-assembly, then, ultrasmall PtPd (~2.90 nm) and Pd NPs (~2.87 nm) with coordinated sizes and well-dispersed have been successfully reduced and encapsulated inside the MBP. Notably, the synthesis possesses distinct advantages such as mild reaction conditions, strong controllability, good biological compatibility, low-toxicity and environmental friendliness. The as-prepared MBP-encapsulated ultrasmall PtPd and Pd NPs (M@MBP NPs) exhibited excellent catalytic activity and toxicity resistance for the ethanol oxidation reaction (EOR) in KOH, due to the synergistic effect of MBP and ultrasmall metal NPs. The current density of PtPd@MBP and Pd@MBP NPs were 3.35 and 2.72 A mg-1, respectively. Such MBP synthesized and encapsulated nanoparticles open a new frontier for the design and preparation of NPs for various applications, such as catalysis, bioremediation and drug delivery.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Preparaciones Farmacéuticas , Catálisis , Oxidación-Reducción
3.
J Hazard Mater ; 409: 124942, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33421882

RESUMEN

The remediation of heavy metal is facing the great challenge of failing to achieve valuable transformation. Therefore, the development of a sustainable technology for heavy metal recycling and reuse is essential. The present study proposed a new way to convert Cr(VI) into value-added biological Cr2O3 nanoparticles (bio-Cr2O3 NPs) with B. megaterium-secreted tryptophan residues proteins (TPN). In this process, Cr(VI) was reduced extracellularly to Cr(III) by B. megaterium without additional reductant and electron donors. This study overcomes the difficulty of separation of NPs and biomass, and realizes the recovery of bio-Cr2O3 NPS from biomass. The conversing efficiency of bio-Cr2O3 NPs reached the highest level (96.56%) at the concentration of 10 ppm Cr(VI). In particular, bio-Cr2O3 NPs exhibited excellent catalytic activity for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 M KOH, outperforming chemically synthesized Cr-base catalysts. Three-dimensional matrix fluorescence (EEM), verification of tryptophan reduction and computation chemistry fully confirmed that TPN was responsible for the bio-Cr2O3 NPs formation. This comprehensive approach to bioremediation, synthesis NPs and recovery, as well as application will open a window for sustainable energy development and heavy metal pollution remediation.


Asunto(s)
Bacillus megaterium , Metales Pesados , Biodegradación Ambiental , Cromo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA