Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Cell ; 152(6): 1218-21, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23498931

RESUMEN

Advances in imaging and reductionist approaches have provided a high-resolution understanding of nuclear pore complex structure and transport, revealing unexpected mechanistic complexities based on nucleoporin functions and specialized import and export pathways.


Asunto(s)
Transporte Activo de Núcleo Celular , Poro Nuclear/química , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Humanos , Modelos Biológicos , Poro Nuclear/metabolismo , Proteínas Nucleares/química
2.
Cell ; 155(3): 582-93, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24243016

RESUMEN

The conserved multifunctional protein Gle1 regulates gene expression at multiple steps: nuclear mRNA export, translation initiation, and translation termination. A GLE1 mutation (FinMajor) is causally linked to human lethal congenital contracture syndrome-1 (LCCS1); however, the resulting perturbations on Gle1 molecular function were unknown. FinMajor results in a proline-phenylalanine-glutamine peptide insertion within the uncharacterized Gle1 coiled-coil domain. Here, we find that Gle1 self-associates both in vitro and in living cells via the coiled-coil domain. Electron microscopy reveals that high-molecular-mass Gle1 oligomers form ?26 nm diameter disk-shaped particles. With the Gle1-FinMajor protein, these particles are malformed. Moreover, functional assays document a specific requirement for proper Gle1 oligomerization during mRNA export, but not for Gle1's roles in translation. These results identify a mechanistic step in Gle1's mRNA export function at nuclear pore complexes and directly implicate altered export in LCCS1 disease pathology.


Asunto(s)
Artrogriposis/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , ARN Mensajero/metabolismo , Transporte Activo de Núcleo Celular , Artrogriposis/genética , Artrogriposis/patología , Células HeLa , Humanos , Mutación , Poro Nuclear/metabolismo , Saccharomyces cerevisiae/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33431688

RESUMEN

The C-terminal domain (CTD) kinase I (CTDK-1) complex is the primary RNA Polymerase II (Pol II) CTD Ser2 kinase in budding yeast. CTDK-1 consists of a cyclin-dependent kinase (CDK) Ctk1, a cyclin Ctk2, and a unique subunit Ctk3 required for CTDK-1 activity. Here, we present a crystal structure of CTDK-1 at 1.85-Å resolution. The structure reveals that, compared to the canonical two-component CDK-cyclin system, the third component Ctk3 of CTDK-1 plays a critical role in Ctk1 activation by stabilizing a key element of CDK regulation, the T-loop, in an active conformation. In addition, Ctk3 contributes to the assembly of CTDK-1 through extensive interactions with both Ctk1 and Ctk2. We also demonstrate that CTDK-1 physically and genetically interacts with the serine/arginine-like protein Gbp2. Together, the data in our work reveal a regulatory mechanism of CDK complexes.


Asunto(s)
Quinasas Ciclina-Dependientes/ultraestructura , Proteínas Quinasas/ultraestructura , ARN Polimerasa II/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Transcripción Genética , Secuencia de Aminoácidos/genética , Núcleo Celular/genética , Núcleo Celular/ultraestructura , Cristalografía por Rayos X , Quinasas Ciclina-Dependientes/genética , Ciclinas/química , Ciclinas/ultraestructura , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Fosforilación , Conformación Proteica , Proteínas Quinasas/genética , ARN Polimerasa II/genética , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética
4.
Cell ; 134(4): 624-33, 2008 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-18724935

RESUMEN

Gene expression requires proper messenger RNA (mRNA) export and translation. However, the functional links between these consecutive steps have not been fully defined. Gle1 is an essential, conserved mRNA export factor whose export function is dependent on the small molecule inositol hexakisphosphate (IP(6)). Here, we show that both Gle1 and IP(6) are required for efficient translation termination in Saccharomyces cerevisiae and that Gle1 interacts with termination factors. In addition, Gle1 has a conserved physical association with the initiation factor eIF3, and gle1 mutants display genetic interactions with the eIF3 mutant nip1-1. Strikingly, gle1 mutants have defects in initiation, whereas strains lacking IP(6) do not. We propose that Gle1 functions together with IP(6) and the DEAD-box protein Dbp5 to regulate termination. However, Gle1 also independently mediates initiation. Thus, Gle1 is uniquely positioned to coordinate the mRNA export and translation mechanisms. These results directly impact models for perturbation of Gle1 function in pathophysiology.


Asunto(s)
Proteínas Portadoras/metabolismo , Ácido Fítico/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ARN Helicasas DEAD-box/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Proteínas de Complejo Poro Nuclear , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Factores de Terminación de Péptidos/metabolismo , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/genética
5.
PLoS Genet ; 16(10): e1009033, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33002012

RESUMEN

In Saccharomyces cerevisiae, the mRNA export receptor Mex67 is recruited to mature nuclear transcripts to mediate mRNA export through the nuclear pore complex (NPC) to the cytoplasm. Mex67 binds transcripts through adaptor proteins such as the poly(A) binding protein Nab2. When a transcript reaches the cytoplasmic face of the NPC, the DEAD-box protein Dbp5 acts to induce a local structural change to release Nab2 and Mex67 in an essential process termed mRNP remodeling. It is unknown how certain proteins (Nab2, Mex67) are released during Dbp5-mediated mRNP remodeling, whereas others remain associated. Here, we demonstrate that Dbp5 associates in close proximity with Mex67 and Nab2 in a cellular complex. Further, fusion of Dbp5 to Nup159 anchors Dbp5 at the cytoplasmic face of the NPC and is sufficient for cell viability. Thus, we speculate that the essential role of Dbp5 in remodeling exporting mRNPs requires its localization to the NPC and is separable from other subcellular functions of Dbp5. This work supports a model where the diverse nuclear, cytoplasmic and NPC functions of Dbp5 in the mRNA lifecycle are not interdependent and that Dbp5 is locally recruited through complex protein-protein interactions to select regions of transcripts for specific removal of transport proteins at the NPC.


Asunto(s)
ARN Helicasas DEAD-box/genética , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Transporte de ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Saccharomyces cerevisiae/genética , Transporte Activo de Núcleo Celular/genética , Núcleo Celular/genética , Supervivencia Celular/genética , Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/genética , ARN/genética , Ribonucleoproteínas/genética , Saccharomyces cerevisiae/genética
6.
J Biol Chem ; 295(49): 16813-16825, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-32981894

RESUMEN

Gle1 is a conserved, essential regulator of DEAD-box RNA helicases, with critical roles defined in mRNA export, translation initiation, translation termination, and stress granule formation. Mechanisms that specify which, where, and when DDXs are targeted by Gle1 are critical to understand. In addition to roles for stress-induced phosphorylation and inositol hexakisphosphate binding in specifying Gle1 function, Gle1 oligomerizes via its N-terminal domain in a phosphorylation-dependent manner. However, a thorough analysis of the role for Gle1 self-association is lacking. Here, we find that Gle1 self-association is driven by two distinct regions: a coiled-coil domain and a novel 10-amino acid aggregation-prone region, both of which are necessary for proper Gle1 oligomerization. By exogenous expression in HeLa cells, we tested the function of a series of mutations that impact the oligomerization domains of the Gle1A and Gle1B isoforms. Gle1 oligomerization is necessary for many, but not all aspects of Gle1A and Gle1B function, and the requirements for each interaction domain differ. Whereas the coiled-coil domain and aggregation-prone region additively contribute to competent mRNA export and stress granule formation, both self-association domains are independently required for regulation of translation under cellular stress. In contrast, Gle1 self-association is dispensable for phosphorylation and nonstressed translation initiation. Collectively, we reveal self-association functions as an additional mode of Gle1 regulation to ensure proper mRNA export and translation. This work also provides further insight into the mechanisms underlying human gle1 disease mutants found in prenatally lethal forms of arthrogryposis.


Asunto(s)
Proteínas de Transporte Nucleocitoplasmático/metabolismo , Secuencia de Aminoácidos , Cromatografía en Gel , Dispersión Dinámica de Luz , Células HeLa , Humanos , Microscopía Fluorescente , Mutagénesis , Proteínas de Transporte Nucleocitoplasmático/antagonistas & inhibidores , Proteínas de Transporte Nucleocitoplasmático/genética , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
7.
J Biol Chem ; 294(2): 559-575, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30429220

RESUMEN

Rapid expression of critical stress response factors is a key survival strategy for diseased or stressed cells. During cell stress, translation is inhibited, and a pre-existing pool of cytoplasmic mRNA-protein complexes reversibly assembles into cytoplasmic stress granules (SGs). Gle1 is a conserved modulator of RNA-dependent DEAD-box proteins required for mRNA export, translation, and stress responses. Proper Gle1 function is critical as reflected by some human diseases such as developmental and neurodegenerative disorders and some cancers linked to gle1 mutations. However, the mechanism by which Gle1 controls SG formation is incompletely understood. Here, we show that human Gle1 is regulated by phosphorylation during heat shock stress. In HeLa cells, stress-induced Gle1 hyperphosphorylation was dynamic, primarily in the cytoplasmic pool, and followed changes in translation factors. MS analysis identified 14 phosphorylation sites in the Gle1A isoform, six of which clustered in an intrinsically disordered, low-complexity N-terminal region flanking the coil-coiled self-association domain. Of note, two mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), phosphorylated the Gle1A N-terminal domain, priming it for phosphorylation by glycogen synthase kinase 3 (GSK3). A phosphomimetic gle1A6D variant (in which six putative Ser/Thr phosphorylation sites were substituted with Asp) perturbed self-association and inhibited DEAD-box helicase 3 (X-linked) (DDX3) ATPase activity. Expression of alanine-substituted, phosphodeficient GFP-gle1A6A promoted SG assembly, whereas GFP-gle1A6D enhanced SG disassembly. We propose that MAPKs and GSK3 phosphorylate Gle1A and thereby coordinate SG dynamics by altering DDX3 function.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Adenosina Trifosfatasas/metabolismo , Gránulos Citoplasmáticos/metabolismo , Células HeLa , Humanos , Fosforilación , ARN Mensajero/metabolismo
8.
Traffic ; 18(12): 776-790, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28869701

RESUMEN

The mRNA lifecycle is driven through spatiotemporal changes in the protein composition of mRNA particles (mRNPs) that are triggered by RNA-dependent DEAD-box protein (Dbp) ATPases. As mRNPs exit the nuclear pore complex (NPC) in Saccharomyces cerevisiae, this remodeling occurs through activation of Dbp5 by inositol hexakisphosphate (IP6 )-bound Gle1. At the NPC, Gle1 also binds Nup42, but Nup42's molecular function is unclear. Here we employ the power of structure-function analysis in S. cerevisiae and human (h) cells, and find that the high-affinity Nup42-Gle1 interaction is integral to Dbp5 (hDDX19B) activation and efficient mRNA export. The Nup42 carboxy-terminal domain (CTD) binds Gle1/hGle1B at an interface distinct from the Gle1-Dbp5/hDDX19B interaction site. A nup42-CTD/gle1-CTD/Dbp5 trimeric complex forms in the presence of IP6 . Deletion of NUP42 abrogates Gle1-Dbp5 interaction, and disruption of the Nup42 or IP6 binding interfaces on Gle1/hGle1B leads to defective mRNA export in S. cerevisiae and human cells. In vitro, Nup42-CTD and IP6 stimulate Gle1/hGle1B activation of Dbp5 and DDX19B recombinant proteins in similar, nonadditive manners, demonstrating complete functional conservation between humans and S. cerevisiae. Together, a highly conserved mechanism governs spatial coordination of mRNP remodeling during export. This has implications for understanding human disease mutations that perturb the Nup42-hGle1B interaction.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ARN Helicasas DEAD-box/metabolismo , Humanos , Proteínas de Complejo Poro Nuclear/química , Proteínas de Transporte Nucleocitoplasmático/química , Ácido Fítico/metabolismo , Saccharomyces cerevisiae/metabolismo
9.
RNA ; 23(3): 365-377, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27932586

RESUMEN

Nuclear pore complexes (NPCs), which are composed of nucleoporins (Nups) and regulate transport between the nucleus and cytoplasm, significantly impact the replicative life span (RLS) of Saccharomyces cerevisiae We previously reported that deletion of the nonessential gene NUP100 increases RLS, although the molecular basis for this effect was unknown. In this study, we find that nuclear tRNA accumulation contributes to increased longevity in nup100Δ cells. Fluorescence in situ hybridization (FISH) experiments demonstrate that several specific tRNAs accumulate in the nuclei of nup100Δ mutants. Protein levels of the transcription factor Gcn4 are increased when NUP100 is deleted, and GCN4 is required for the elevated life spans of nup100Δ mutants, similar to other previously described tRNA export and ribosomal mutants. Northern blots indicate that tRNA splicing and aminoacylation are not significantly affected in nup100Δ cells, suggesting that Nup100 is largely required for nuclear export of mature, processed tRNAs. Distinct tRNAs accumulate in the nuclei of nup100Δ and msn5Δ mutants, while Los1-GFP nucleocytoplasmic shuttling is unaffected by Nup100. Thus, we conclude that Nup100 regulates tRNA export in a manner distinct from Los1 or Msn5. Together, these experiments reveal a novel Nup100 role in the tRNA life cycle that impacts the S. cerevisiae life span.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Núcleo Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Complejo Poro Nuclear/genética , ARN de Hongos/genética , ARN de Transferencia/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transporte Activo de Núcleo Celular/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Northern Blotting , División Celular , Medios de Cultivo/química , Hibridación Fluorescente in Situ , Carioferinas/deficiencia , Carioferinas/genética , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/deficiencia , ARN de Hongos/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo
10.
Genes Dev ; 25(10): 1065-77, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21576266

RESUMEN

Essential messenger RNA (mRNA) export factors execute critical steps to mediate directional transport through nuclear pore complexes (NPCs). At cytoplasmic NPC filaments, the ATPase activity of DEAD-box protein Dbp5 is activated by inositol hexakisphosphate (IP(6))-bound Gle1 to mediate remodeling of mRNA-protein (mRNP) complexes. Whether a single Dbp5 executes multiple remodeling events and how Dbp5 is recycled are unknown. Evidence suggests that Dbp5 binding to Nup159 is required for controlling interactions with Gle1 and the mRNP. Using in vitro reconstitution assays, we found here that Nup159 is specifically required for ADP release from Dbp5. Moreover, Gle1-IP(6) stimulates ATP binding, thus priming Dbp5 for RNA loading. In vivo, a dbp5-R256D/R259D mutant with reduced ADP binding bypasses the need for Nup159 interaction. However, NPC spatial control is important, as a dbp5-R256D/R259D nup42Δ double mutant is temperature-sensitive for mRNA export. Further analysis reveals that remodeling requires a conformational shift to the Dbp5-ADP form. ADP release factors for DEAD-box proteins have not been reported previously and reflect a new paradigm for regulation. We propose a model wherein Nup159 and Gle1-IP(6) regulate Dbp5 cycles by controlling its nucleotide-bound state, allowing multiple cycles of mRNP remodeling by a single Dbp5 at the NPC.


Asunto(s)
Núcleo Celular/metabolismo , ARN Helicasas DEAD-box , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático , Nucleótidos/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Mutación , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Unión Proteica , Conformación Proteica , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
11.
Genes Dev ; 25(10): 1052-64, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21576265

RESUMEN

Nuclear export of messenger RNA (mRNA) occurs by translocation of mRNA/protein complexes (mRNPs) through nuclear pore complexes (NPCs). The DEAD-box protein Dbp5 mediates export by triggering removal of mRNP proteins in a spatially controlled manner. This requires Dbp5 interaction with Nup159 in NPC cytoplasmic filaments and activation of Dbp5's ATPase activity by Gle1 bound to inositol hexakisphosphate (IP(6)). However, the precise sequence of events within this mechanism has not been fully defined. Here we analyze dbp5 mutants that alter ATP binding, ATP hydrolysis, or RNA binding. We found that ATP binding and hydrolysis are required for efficient Dbp5 association with NPCs. Interestingly, mutants defective for RNA binding are dominant-negative (DN) for mRNA export in yeast and human cells. We show that the DN phenotype stems from competition with wild-type Dbp5 for Gle1 at NPCs. The Dbp5-Gle1 interaction is limiting for export and, importantly, can be independent of Nup159. Fluorescence recovery after photobleaching experiments in yeast show a very dynamic association between Dbp5 and NPCs, averaging <1 sec, similar to reported NPC translocation rates for mRNPs. This work reveals critical steps in the Gle1-IP(6)/Dbp5/Nup159 cycle, and suggests that the number of remodeling events mediated by a single Dbp5 is limited.


Asunto(s)
Núcleo Celular/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Poro Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , Células HeLa , Humanos , Hidrólisis , Mutación , Proteínas de Complejo Poro Nuclear/metabolismo , Fenotipo , Unión Proteica/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
12.
Hum Mol Genet ; 24(5): 1363-73, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25343993

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective death of motor neurons. Causative mutations in the global RNA-processing proteins TDP-43 and FUS among others, as well as their aggregation in ALS patients, have identified defects in RNA metabolism as an important feature in this disease. Lethal congenital contracture syndrome 1 and lethal arthrogryposis with anterior horn cell disease are autosomal recessive fetal motor neuron diseases that are caused by mutations in another global RNA-processing protein, hGle1. In this study, we carried out the first screening of GLE1 in ALS patients (173 familial and 760 sporadic) and identified 2 deleterious mutations (1 splice site and 1 nonsense mutation) and 1 missense mutation. Functional analysis of the deleterious mutants revealed them to be unable to rescue motor neuron pathology in zebrafish morphants lacking Gle1. Furthermore, in HeLa cells, both mutations caused a depletion of hGle1 at the nuclear pore where it carries out an essential role in nuclear export of mRNA. These results suggest a haploinsufficiency mechanism and point to a causative role for GLE1 mutations in ALS patients. This further supports the involvement of global defects in RNA metabolism in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Codón sin Sentido , Mutación Missense , Proteínas de Transporte Nucleocitoplasmático/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Artrogriposis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Haploinsuficiencia/genética , Células HeLa , Humanos , Microscopía Confocal , Neuronas Motoras/patología , Poro Nuclear/genética , Poro Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Linaje , Procesamiento Proteico-Postraduccional , Empalme del ARN , ARN Mensajero/metabolismo , Pez Cebra
13.
Proc Natl Acad Sci U S A ; 110(34): 13904-9, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23918387

RESUMEN

A simple and robust method for targeted mutagenesis in zebrafish has long been sought. Previous methods generate monoallelic mutations in the germ line of F0 animals, usually delaying homozygosity for the mutation to the F2 generation. Generation of robust biallelic mutations in the F0 would allow for phenotypic analysis directly in injected animals. Recently the type II prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system has been adapted to serve as a targeted genome mutagenesis tool. Here we report an improved CRISPR/Cas system in zebrafish with custom guide RNAs and a zebrafish codon-optimized Cas9 protein that efficiently targeted a reporter transgene Tg(-5.1mnx1:egfp) and four endogenous loci (tyr, golden, mitfa, and ddx19). Mutagenesis rates reached 75-99%, indicating that most cells contained biallelic mutations. Recessive null-like phenotypes were observed in four of the five targeting cases, supporting high rates of biallelic gene disruption. We also observed efficient germ-line transmission of the Cas9-induced mutations. Finally, five genomic loci can be targeted simultaneously, resulting in multiple loss-of-function phenotypes in the same injected fish. This CRISPR/Cas9 system represents a highly effective and scalable gene knockout method in zebrafish and has the potential for applications in other model organisms.


Asunto(s)
Técnicas de Inactivación de Genes/métodos , Ingeniería Genética/métodos , Genoma/genética , Mutagénesis Sitio-Dirigida/métodos , Pez Cebra/genética , Animales , Cruzamiento/métodos , Desoxirribonucleasas/genética , Secuencias Invertidas Repetidas/genética , Fenotipo
15.
J Biol Chem ; 289(25): 17668-79, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24817120

RESUMEN

In Saccharomyces cerevisiae, Hog1 MAPK is activated and induces a transcriptional program in response to hyperosmotic stress. Several Hog1-responsive genes exhibit stochastic transcription, resulting in cell-to-cell variability in mRNA and protein levels. However, the mechanisms governing stochastic gene activity are not fully defined. Here we uncover a novel role for casein kinase II (CK2) in the cellular response to hyperosmotic stress. CK2 interacts with and phosphorylates the Hot1 transcription factor; however, Hot1 phosphorylation is not sufficient for controlling the stochastic response. The CK2 protein itself is required to negatively regulate mRNA expression of Hot1-responsive genes and Hot1 enrichment at target promoters. Single-cell gene expression analysis reveals altered activation of Hot1-targeted STL1 in ck2 mutants, resulting in a bimodal to unimodal shift in expression. Together, this work reveals a novel CK2 function during the hyperosmotic stress response that promotes cell-to-cell variability in gene expression.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Quinasa de la Caseína II/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Presión Osmótica/fisiología , Fosforilación/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Procesos Estocásticos , Factores de Transcripción/genética
16.
Development ; 139(7): 1316-26, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22357925

RESUMEN

In humans, GLE1 is mutated in lethal congenital contracture syndrome 1 (LCCS1) leading to prenatal death of all affected fetuses. Although the molecular roles of Gle1 in nuclear mRNA export and translation have been documented, no animal models for this disease have been reported. To elucidate the function of Gle1 in vertebrate development, we used the zebrafish (Danio rerio) model system. gle1 mRNA is maternally deposited and widely expressed. Altering Gle1 using an insertional mutant or antisense morpholinos results in multiple defects, including immobility, small eyes, diminished pharyngeal arches, curved body axis, edema, underdeveloped intestine and cell death in the central nervous system. These phenotypes parallel those observed in LCCS1 human fetuses. Gle1 depletion also results in reduction of motoneurons and aberrant arborization of motor axons. Unexpectedly, the motoneuron deficiency results from apoptosis of neural precursors, not of differentiated motoneurons. Mosaic analyses further indicate that Gle1 activity is required extrinsically in the environment for normal motor axon arborization. Importantly, the zebrafish phenotypes caused by Gle1 deficiency are only rescued by expressing wild-type human GLE1 and not by the disease-linked Fin(Major) mutant form of GLE1. Together, our studies provide the first functional characterization of Gle1 in vertebrate development and reveal its essential role in actively dividing cells. We propose that defective GLE1 function in human LCCS1 results in both neurogenic and non-neurogenic defects linked to the apoptosis of proliferative organ precursors.


Asunto(s)
Artrogriposis/genética , Mutación , Proteínas de Transporte Nucleocitoplasmático/fisiología , Proteínas de Unión al ARN/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Apoptosis , Núcleo Celular/metabolismo , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica , Genotipo , Humanos , Modelos Genéticos , Neuronas/metabolismo , Proteínas de Transporte Nucleocitoplasmático/química , Fenotipo , Plásmidos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Pez Cebra , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
17.
Nat Cell Biol ; 8(7): 711-6, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16783363

RESUMEN

Regulation of nuclear mRNA export is critical for proper eukaryotic gene expression. A key step in this process is the directional translocation of mRNA-ribonucleoprotein particles (mRNPs) through nuclear pore complexes (NPCs) that are embedded in the nuclear envelope. Our previous studies in Saccharomyces cerevisiae defined an in vivo role for inositol hexakisphosphate (InsP6) and NPC-associated Gle1 in mRNA export. Here, we show that Gle1 and InsP6 act together to stimulate the RNA-dependent ATPase activity of the essential DEAD-box protein Dbp5. Overexpression of DBP5 specifically suppressed mRNA export and growth defects of an ipk1 nup42 mutant defective in InsP6 production and Gle1 localization. In vitro kinetic analysis showed that InsP6 significantly increased Dbp5 ATPase activity in a Gle1-dependent manner and lowered the effective RNA concentration for half-maximal ATPase activity. Gle1 alone had minimal effects. Maximal InsP6 binding required both Dbp5 and Gle1. It has been suggested that Dbp5 requires unidentified cofactors. We now propose that Dbp5 activation at NPCs requires Gle1 and InsP6. This would facilitate spatial control of the remodelling of mRNP protein composition during directional transport and provide energy to power transport cycles.


Asunto(s)
Proteínas Portadoras/metabolismo , Poro Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Ácido Fítico/metabolismo , ARN Helicasas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Sitios de Unión/fisiología , Proteínas Portadoras/genética , ARN Helicasas DEAD-box , Activación Enzimática/fisiología , Poro Nuclear/ultraestructura , Proteínas de Complejo Poro Nuclear , Proteínas de Transporte Nucleocitoplasmático/genética , ARN Helicasas/genética , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Regulación hacia Arriba/fisiología
18.
Proc Natl Acad Sci U S A ; 107(46): 19921-6, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-20980661

RESUMEN

Inositol phosphate (IP) kinases constitute an emerging class of cellular kinases linked to multiple cellular activities. Here, we report a previously uncharacterized cellular function in Hedgehog (Hh) signaling for the IP kinase designated inositol hexakisphosphate kinase-2 (IP6K2) that produces diphosphoryl inositol phosphates (PP-IPs). In zebrafish embryos, IP6K2 activity was required for normal development of craniofacial structures, somites, and neural crest cells. ip6k2 depletion in both zebrafish and mammalian cells also inhibited Hh target gene expression. Inhibiting IP(6) kinase activity using N(2)-(m-(trifluoromethy)lbenzyl) N(6)-(p-nitrobenzyl)purine (TNP) resulted in altered Hh signal transduction. In zebrafish, restoring IP6K2 levels with exogenous ip6k2 mRNA reversed the effects of IP6K2 depletion. Furthermore, overexpression of ip6k2 in mammalian cells enhanced the Hh pathway response, suggesting IP6K2 is a positive regulator of Hh signaling. Perturbations from IP6K2 depletion or TNP were reversed by overexpressing smoM2, gli1, or ip6k2. Moreover, the inhibitory effect of cyclopamine was reversed by overexpressing ip6k2. This identified roles for the inositol kinase pathway in early vertebrate development and tissue morphogenesis, and in Hh signaling. We propose that IP6K2 activity is required at the level or downstream of Smoothened but upstream of the transcription activator Gli1.


Asunto(s)
Proteínas Hedgehog/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Movimiento Celular , Anomalías Craneofaciales/embriología , Anomalías Craneofaciales/enzimología , Anomalías Craneofaciales/patología , Embrión de Mamíferos/enzimología , Embrión de Mamíferos/patología , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Fosfatos de Inositol/metabolismo , Ratones , Células 3T3 NIH , Cresta Neural/enzimología , Cresta Neural/patología , Somitos/anomalías , Somitos/enzimología , Somitos/patología , Pez Cebra/embriología , Pez Cebra/genética
19.
Adv Biol Regul ; 90: 100990, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37801910

RESUMEN

Gle1 regulates gene expression at multiple steps from transcription to mRNA export to translation under stressed and non-stressed conditions. To better understand Gle1 function in stressed human cells, specific antibodies were generated that recognized the phosphorylation of threonine residue 102 (T102) in Gle1. A series of in vitro kinase assays indicated that T102 phosphorylation serves as a priming event for further phosphorylation in Gle1's N-terminal low complexity cluster. Indirect immunofluorescence microscopy with the anti-Gle1-pT102 antibodies revealed that basally phosphorylated Gle1 was pre-dominantly nuclear with punctate distribution; however, under sodium arsenite-induced stress, more cytoplasmic localization was detected. Immunoprecipitation with the anti-Gle1-pT102 antibody resulted in co-isolation of Gle1-pT102 with the DEAD-box protein DDX1 in a phosphatase sensitive manner. This suggested Gle1 phosphorylation might be linked to its role in regulating DDX1 during transcription termination. Notably, whereas the total Gle1-DDX1 association was decreased when Gle1 nucleocytoplasmic shuttling was disrupted, co-isolation of Gle1-pT102 and DDX1 increased under the same conditions. Taken together, these studies demonstrated that Gle1 phosphorylation impacts its cellular distribution and potentially drives nuclear Gle1 functions in transcription termination. We propose a model wherein phosphorylation of Gle1 either reduces its nucleocytoplasmic shuttling capacity or increases its binding affinity with nuclear interaction partners.


Asunto(s)
Proteínas de Complejo Poro Nuclear , Humanos , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Fosforilación , Núcleo Celular/metabolismo
20.
J Biol Chem ; 286(46): 39750-9, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21949122

RESUMEN

DEAD-box protein (Dbp) family members are essential for gene expression; however, their precise roles and regulation are not fully defined. During messenger (m)RNA export, Gle1 bound to inositol hexakisphosphate (IP(6)) acts via Dbp5 to facilitate remodeling of mRNA-protein complexes. In contrast, here we define a novel Gle1 role in translation initiation through regulation of a different DEAD-box protein, the initiation factor Ded1. We find that Gle1 physically and genetically interacts with Ded1. Surprisingly, whereas Gle1 stimulates Dbp5, it inhibits Ded1 ATPase activity in vitro, and IP(6) does not affect this inhibition. Functionally, a gle1-4 mutant specifically suppresses initiation defects in a ded1-120 mutant, and ded1 and gle1 mutants have complementary perturbations in AUG start site recognition. Consistent with this role in initiation, Gle1 inhibits translation in vitro in competent extracts. These results indicate that Gle1 has a direct role in initiation and negatively regulates Ded1. Together, the differential regulation of two distinct DEAD-box proteins by a common factor (Gle1) establishes a new paradigm for controlling gene expression and coupling translation with mRNA export.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Proteínas de Complejo Poro Nuclear/metabolismo , Iniciación de la Cadena Peptídica Traduccional/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico Activo/fisiología , ARN Helicasas DEAD-box/genética , Mutación , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA