Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Diabetologia ; 67(6): 1107-1113, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38483543

RESUMEN

AIMS/HYPOTHESIS: The aim of the present study was to conduct a randomised, placebo-controlled, double-blind, crossover trial to determine whether pre-meal ketone monoester ingestion reduces postprandial glucose concentrations in individuals with type 2 diabetes. METHODS: In this double-blind, placebo-controlled, crossover design study, ten participants with type 2 diabetes (age 59±1.7 years, 50% female, BMI 32±1 kg/m2, HbA1c 54±2 mmol/mol [7.1±0.2%]) were randomised using computer-generated random numbers. The study took place at the Nutritional Physiology Research Unit, University of Exeter, Exeter, UK. Using a dual-glucose tracer approach, we assessed glucose kinetics after the ingestion of a 0.5 g/kg body mass ketone monoester (KME) or a taste-matched non-caloric placebo before a mixed-meal tolerance test. The primary outcome measure was endogenous glucose production. Secondary outcome measures were total glucose appearance rate and exogenous glucose appearance rate, glucose disappearance rate, blood glucose, serum insulin, ß-OHB and NEFA levels, and energy expenditure. RESULTS: Data for all ten participants were analysed. KME ingestion increased mean ± SEM plasma beta-hydroxybutyrate from 0.3±0.03 mmol/l to a peak of 4.3±1.2 mmol/l while reducing 2 h postprandial glucose concentrations by ~18% and 4 h postprandial glucose concentrations by ~12%, predominately as a result of a 28% decrease in the 2 h rate of glucose appearance following meal ingestion (all p<0.05). The reduction in blood glucose concentrations was associated with suppressed plasma NEFA concentrations after KME ingestion, with no difference in plasma insulin concentrations between the control and KME conditions. Postprandial endogenous glucose production was unaffected by KME ingestion (mean ± SEM 0.76±0.15 and 0.88±0.10 mg kg-1 min-1 for the control and KME, respectively). No adverse effects of KME ingestion were observed. CONCLUSIONS/INTERPRETATION: KME ingestion appears to delay glucose absorption in adults with type 2 diabetes, thereby reducing postprandial glucose concentrations. Future work to explore the therapeutic potential of KME supplementation in type 2 diabetes is warranted. TRIAL REGISTRATION: ClinicalTrials.gov NCT05518448. FUNDING: This project was supported by a Canadian Institutes of Health Research (CIHR) Project Grant (PJT-169116) and a Natural Sciences and Engineering Research Council (NSERC) Discovery Grant (RGPIN-2019-05204) awarded to JPL and an Exeter-UBCO Sports Health Science Fund Project Grant awarded to FBS and JPL.


Asunto(s)
Glucemia , Estudios Cruzados , Diabetes Mellitus Tipo 2 , Cetonas , Periodo Posprandial , Humanos , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Persona de Mediana Edad , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Masculino , Método Doble Ciego , Cetonas/sangre , Ácido 3-Hidroxibutírico/sangre , Insulina/sangre , Bebidas
2.
Am J Physiol Endocrinol Metab ; 327(4): E585-E597, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39082902

RESUMEN

Black African-Caribbean (BAC) populations are at greater risk of cardiometabolic disease than White Europeans (WE), despite exhibiting lower fasting triacylglycerol (TAG) concentrations. However, limited data exist regarding postprandial fatty acid metabolism in BAC populations. This study determined the ethnic differences in postprandial fatty acid metabolism between overweight and obese WE and BAC men. WE [n = 10, age 33.3 ± 1.7 yr; body mass index (BMI) = 26.8 (25.8-31.0) kg/m2] and BAC [n = 9, age 27.9 ± 1.0 yr; BMI = 27.5 (26.0-28.6) kg/m2] men consumed two consecutive (at 0 and 300 min) moderate-to-high-fat meals-the first labeled with [U-13C]palmitate. The plasma concentration and appearance of meal-derived fatty acids in very-low-density lipoprotein (VLDL)-TAG, chylomicron-TAG, and nonesterified fatty acid (NEFA) were determined over an 8-h postprandial period. Indirect calorimetry with 13CO2 enrichment determined total and meal-derived fatty acid oxidation rates, and plasma ß-hydroxybutyrate (3-OHB) concentration was measured to assess ketogenesis. BAC exhibited lower postprandial TAG [area under the curve (AUC0-480) = 671 (563-802) vs. 469 (354-623) mmol/L/min, P = 0.022] and VLDL-TAG [AUC0-480 = 288 ± 30 vs. 145 ± 27 mmol/L/min, P = 0.003] concentrations than WE. The appearance of meal-derived fatty acids in VLDL-TAG was lower in BAC than in WE (AUC0-480 = 133 ± 12 vs. 78 ± 13 mmol/L/min, P = 0.007). Following the second meal, BAC showed a trend for lower chylomicron-TAG concentration [AUC300-480 = 69 (51-93) vs. 43 (28-67) mmol/L/min, P = 0.057]. There were no ethnic differences in the appearance of chylomicron-TAG, cumulative fatty acid oxidation, and the NEFA:3-OHB ratio (P > 0.05). In conclusion, BAC exhibit lower postprandial TAG concentrations compared with WE men, driven by lower VLDL-TAG concentrations and possibly lower chylomicron-TAG in the late postprandial period. These findings suggest that postprandial fatty acid trafficking may be a less important determinant of cardiometabolic risk in BAC than in WE men.NEW & NOTEWORTHY Postprandial TAG is lower in Black African-Caribbean men than in White European men, and this is likely driven by lower meal-derived VLDL-TAG in Black African-Caribbean men. This observation could suggest that fatty acid trafficking may be a less important determinant of cardiometabolic risk in Black Africans than in White European men.


Asunto(s)
Población Negra , Ácidos Grasos , Obesidad , Sobrepeso , Periodo Posprandial , Triglicéridos , Población Blanca , Adulto , Humanos , Masculino , Quilomicrones/metabolismo , Quilomicrones/sangre , Ácidos Grasos/metabolismo , Ácidos Grasos/sangre , Ácidos Grasos no Esterificados/sangre , Ácidos Grasos no Esterificados/metabolismo , Lipoproteínas VLDL/sangre , Lipoproteínas VLDL/metabolismo , Obesidad/metabolismo , Obesidad/etnología , Sobrepeso/metabolismo , Sobrepeso/etnología , Periodo Posprandial/fisiología , Triglicéridos/sangre , Triglicéridos/metabolismo
3.
J Nutr ; 154(7): 2053-2064, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797481

RESUMEN

BACKGROUND: Industrial processing can alter the structural complexity of dietary proteins and, potentially, their digestion and absorption upon ingestion. High-moisture extrusion (HME), a common processing method used to produce meat alternative products, affects in vitro digestion, but human data are lacking. We hypothesized that HME of a mycoprotein/pea protein blend would impair in vitro digestion and in vivo postprandial plasma amino acid availability. METHODS: In Study A, 9 healthy volunteers completed 2 experimental trials in a randomized, double-blind, crossover design. Participants consumed a beverage containing 25 g protein from a "dry" blend (CON) of mycoprotein/pea protein (39%/61%) or an HME content-matched blend (EXT). Arterialized venous blood samples were collected in the postabsorptive state and regularly over a 5-h postprandial period to assess plasma amino acid concentrations. In Study B, in vitro digestibility of the 2 beverages were assessed using bicinchoninic acid assay and optical fluorescence microscopy at baseline and during and following gastric and intestinal digestion using the INFOGEST model of digestion. RESULTS: Protein ingestion increased plasma total, essential (EAA), and branched-chain amino acid (BCAA) concentrations (time effect, P < 0.0001) but more rapidly and to a greater magnitude in the CON compared with the EXT condition (condition × time interaction, P < 0.0001). This resulted in greater plasma availability of EAA and BCAA concentrations during the early postprandial period (0-150 min). These data were corroborated by the in vitro approach, which showed greater protein availability in the CON (2150 ± 129 mg/mL) compared with the EXT (590 ± 41 mg/mL) condition during the gastric phase. Fluorescence microscopy revealed clear structural differences between the 2 conditions. CONCLUSIONS: These data demonstrate that HME delays in vivo plasma amino acid availability following ingestion of a mycoprotein/pea protein blend. This is likely due to impaired gastric phase digestion as a result of HME-induced aggregate formation in the pea protein. This trial was registered at clinicaltrials.gov as NCT05584358.


Asunto(s)
Aminoácidos , Estudios Cruzados , Proteínas en la Dieta , Digestión , Periodo Posprandial , Humanos , Aminoácidos/sangre , Aminoácidos/metabolismo , Adulto , Masculino , Proteínas en la Dieta/administración & dosificación , Femenino , Método Doble Ciego , Adulto Joven , Disponibilidad Biológica , Manipulación de Alimentos , Proteínas de Guisantes
4.
Diabetes Obes Metab ; 26(11): 5211-5221, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39149769

RESUMEN

AIM: To examine the hypothesis that there would be ethnic differences in the relationship between ectopic fat and tissue-specific insulin resistance (IR) across a spectrum of glucose tolerance in Black African (BA) and White European (WE) men. MATERIALS AND METHODS: Fifty-three WE men (23/10/20 normal glucose tolerance [NGT]/impaired glucose tolerance [IGT]/type 2 diabetes [T2D]) and 48 BA men (20/10/18, respectively) underwent a two-step hyperinsulinaemic-euglycaemic clamp with infusion of D-[6,6-2H2]-glucose and [2H5]-glycerol to assess hepatic, peripheral and adipose tissue IR. Magnetic resonance imaging was used to measure subcutaneous adipose tissue, visceral adipose tissue (VAT) and intrahepatic lipid (IHL). Associations between ectopic fat and IR were assessed using linear regression models. RESULTS: There were no differences in tissue-specific IR between ethnic groups at any stage of glucose tolerance. VAT level was consistently lower in the BA population; NGT (p = 0.013), IGT (p = 0.006) and T2D (p = 0.015). IHL was also lower in the BA compared with the WE men (p = 0.013). VAT and IHL levels were significantly associated with hepatic IR in the BA population (p = 0.001) and with peripheral IR in the WE population (p = 0.027). CONCLUSIONS: The present study suggests that BA and WE men exhibit the same degree of IR across a glucose tolerance continuum, but with lower VAT and IHL levels in the BA population, suggesting that IR may be driven by a mechanism other than increased ectopic fat accumulation in BA men.


Asunto(s)
Población Negra , Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , Resistencia a la Insulina , Grasa Intraabdominal , Población Blanca , Humanos , Masculino , Resistencia a la Insulina/etnología , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/etnología , Diabetes Mellitus Tipo 2/etnología , Diabetes Mellitus Tipo 2/metabolismo , Persona de Mediana Edad , Adulto , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/diagnóstico por imagen , Técnica de Clampeo de la Glucosa , Imagen por Resonancia Magnética , Prueba de Tolerancia a la Glucosa , Glucemia/metabolismo , Glucemia/análisis
5.
Am J Physiol Endocrinol Metab ; 325(3): E267-E279, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37529834

RESUMEN

Pea protein is an attractive nonanimal-derived protein source to support dietary protein requirements. However, although high in leucine, a low methionine content has been suggested to limit its anabolic potential. Mycoprotein has a complete amino acid profile which, at least in part, may explain its ability to robustly stimulate myofibrillar protein synthesis (MyoPS) rates. We hypothesized that an inferior postexercise MyoPS response would be seen following ingestion of pea protein compared with mycoprotein, which would be (partially) rescued by blending the two sources. Thirty-three healthy, young [age: 21 ± 1 yr, body mass index (BMI): 24 ± 1 kg·m-2] and resistance-trained participants received primed, continuous infusions of l-[ring-2H5]phenylalanine and completed a bout of whole body resistance exercise before ingesting 25 g of protein from mycoprotein (MYC, n = 11), pea protein (PEA, n = 11), or a blend (39% MYC, 61% PEA) of the two (BLEND, n = 11). Blood and muscle samples were taken pre-, 2 h, and 4 h postexercise/protein ingestion to assess postabsorptive and postprandial postexercise myofibrillar protein fractional synthetic rates (FSRs). Protein ingestion increased plasma essential amino acid and leucine concentrations (time effect; P < 0.0001), but more rapidly in BLEND and PEA compared with MYC (time × condition interaction; P < 0.0001). From similar postabsorptive values (MYC, 0.026 ± 0.008%·h-1; PEA, 0.028 ± 0.007%·h-1; BLEND, 0.026 ± 0.006%·h-1), resistance exercise and protein ingestion increased myofibrillar FSRs (time effect; P < 0.0001) over a 4-h postprandial period (MYC, 0.076 ± 0.004%·h-1; PEA, 0.087 ± 0.01%·h-1; BLEND, 0.085 ± 0.01%·h-1), with no differences between groups (all; P > 0.05). These data show that all three nonanimal-derived protein sources have utility in supporting postexercise muscle reconditioning.NEW & NOTEWORTHY This study provides evidence that pea protein (PEA), mycoprotein (MYC), and their blend (BLEND) can support postexercise myofibrillar protein synthesis rates following a bout of whole body resistance exercise. Furthermore, these data suggest that a methionine deficiency in pea may not limit its capacity to stimulate an acute increase in muscle protein synthesis (MPS).


Asunto(s)
Proteínas de Guisantes , Entrenamiento de Fuerza , Humanos , Adulto Joven , Adulto , Leucina/metabolismo , Proteínas de Guisantes/metabolismo , Aminoácidos/metabolismo , Músculo Esquelético/metabolismo , Ingestión de Alimentos , Metionina/metabolismo , Proteínas en la Dieta/metabolismo , Periodo Posprandial
6.
Br J Nutr ; 130(1): 20-32, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-36172885

RESUMEN

Ingestion of mycoprotein stimulates skeletal muscle protein synthesis (MPS) rates to a greater extent than concentrated milk protein when matched for leucine content, potentially attributable to the wholefood nature of mycoprotein. We hypothesised that bolus ingestion of mycoprotein as part of its wholefood matrix would stimulate MPS rates to a greater extent compared with a leucine-matched bolus of protein concentrated from mycoprotein. Twenty-four healthy young (age, 21 ± 2 years; BMI, 24 ± 3 kg.m2) males received primed, continuous infusions of L-[ring-2H5]phenylalanine and completed a bout of unilateral resistance leg exercise before ingesting either 70 g mycoprotein (MYC; 31·4 g protein, 2·5 g leucine; n 12) or 38·2 g of a protein concentrate obtained from mycoprotein (PCM; 28·0 g protein, 2·5 g leucine; n 12). Blood and muscle samples (vastus lateralis) were taken pre- and (4 h) post-exercise/protein ingestion to assess postabsorptive and postprandial myofibrillar protein fractional synthetic rates (FSR) in resting and exercised muscle. Protein ingestion increased plasma essential amino acid and leucine concentrations (P < 0·0001), but more rapidly (both 60 v. 90 min; P < 0·0001) and to greater magnitudes (1367 v. 1346 µmol·l-1 and 298 v. 283 µmol·l-1, respectively; P < 0·0001) in PCM compared with MYC. Protein ingestion increased myofibrillar FSR (P < 0·0001) in both rested (MYC, Δ0·031 ± 0·007 %·h-1 and PCM, Δ0·020 ± 0·008 %·h-1) and exercised (MYC, Δ0·057 ± 0·011 %·h-1 and PCM, Δ0·058 ± 0·012 %·h-1) muscle, with no differences between conditions (P > 0·05). Mycoprotein ingestion results in equivalent postprandial stimulation of resting and post-exercise myofibrillar protein synthesis rates irrespective of whether it is consumed within or without its wholefood matrix.


Asunto(s)
Proteínas en la Dieta , Proteínas Musculares , Masculino , Humanos , Adulto Joven , Adulto , Leucina , Proteínas en la Dieta/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Ingestión de Alimentos , Periodo Posprandial
7.
Int J Sport Nutr Exerc Metab ; 31(6): 466-474, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34453013

RESUMEN

Supplementing postexercise carbohydrate (CHO) intake with protein has been suggested to enhance recovery from endurance exercise. The aim of this study was to investigate whether adding protein to the recovery drink can improve 24-hr recovery when CHO intake is suboptimal. In a double-blind crossover design, 12 trained men performed three 2-day trials consisting of constant-load exercise to reduce glycogen on Day 1, followed by ingestion of a CHO drink (1.2 g·kg-1·2 hr-1) either without or with added whey protein concentrate (CHO + PRO) or whey protein hydrolysate (CHO + PROH) (0.3 g·kg-1·2 hr-1). Arterialized blood glucose and insulin responses were analyzed for 2 hr postingestion. Time-trial performance was measured the next day after another bout of glycogen-reducing exercise. The 30-min time-trial performance did not differ between the three trials (M ± SD, 401 ± 75, 411 ± 80, 404 ± 58 kJ in CHO, CHO + PRO, and CHO + PROH, respectively, p = .83). No significant differences were found in glucose disposal (area under the curve [AUC]) between the postexercise conditions (364 ± 107, 341 ± 76, and 330 ± 147, mmol·L-1·2 hr-1, respectively). Insulin AUC was lower in CHO (18.1 ± 7.7 nmol·L-1·2 hr-1) compared with CHO + PRO and CHO + PROH (24.6 ± 12.4 vs. 24.5 ± 10.6, p = .036 and .015). No difference in insulin AUC was found between CHO + PRO and CHO + PROH. Despite a higher acute insulin response, adding protein to a CHO-based recovery drink after a prolonged, high-intensity exercise bout did not change next-day exercise capacity when overall 24-hr macronutrient and caloric intake was controlled.


Asunto(s)
Carbohidratos de la Dieta , Músculo Esquelético , Glucemia , Método Doble Ciego , Ingestión de Alimentos , Ejercicio Físico , Glucógeno , Humanos , Insulina , Masculino , Resistencia Física
8.
Eur J Clin Nutr ; 78(9): 757-764, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39003347

RESUMEN

BACKGROUND: Mycoprotein is a high-fibre food previously shown to reduce postprandial glucose concentrations when ingested within a mixed-meal. We applied a dual stable isotope tracer approach to determine whether this is due to a reduced rate of appearance of glucose, in participants of ranging BMI. METHODS: Twenty-four adults (F = 8, BMI 30 ± 6 kg·m-2) attended 2 trials in a double-blind, randomised, cross-over design. Participants ingested two energy and macronutrient matched milk-based drinks (enriched with 1000 mg [U-13C6] glucose in a subset of 12 participants), containing 50 g glucose and either 0 (CON) or 20 g (MYC) mycoprotein. A primed continuous intravenous infusion of D-[6,6-2H2] glucose determined plasma glucose kinetics over 6 h. Postprandial time-course, and AUC, of glucose and insulin concentration, rate of disappearance (RdT) and appearance of exogenous (RaEx), endogenous (EGP), and total (RaT) plasma glucose were assessed using two- and one-way ANOVA. RESULTS: Drink ingestion increased blood glucose and serum insulin concentrations (P < 0.05) and were comparable between conditions (P > 0.05). Both RaT and RdT were higher with MYC compared with CON over 6 h (mean 6 h glucose appearance and disappearance increased by 5 and 9%, respectively, P < 0.05). RaEx was not affected by MYC ingestion over 6 h (P > 0.05). The mean contribution of EGP to total glucose appearance was 15% greater with MYC, with a trend towards significance (P = 0.05). There was no relationship between BMI and the response to MYC ingestion for any of the variables (P < 0.05). CONCLUSION: The ingestion of mycoprotein within a mixed-meal impacted postprandial glucose kinetics, but not blood glucose or serum insulin concentrations, in individuals of ranging BMI. CLINICAL TRIAL REGISTRY NUMBER AND WEBSITE: This trial was registered at clinicaltrials.gov as NCT04084639 and can be accessed at https://clinicaltrials.gov/ct2/show/NCT04084639 .


Asunto(s)
Glucemia , Estudios Cruzados , Periodo Posprandial , Humanos , Glucemia/metabolismo , Masculino , Femenino , Adulto , Método Doble Ciego , Comidas , Insulina/sangre , Persona de Mediana Edad , Fibras de la Dieta/administración & dosificación , Fibras de la Dieta/farmacología , Adulto Joven , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA