Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nat Cell Biol ; 10(9): 1039-50, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19160484

RESUMEN

Using two-colour imaging and high resolution TIRF microscopy, we investigated the assembly and maturation of nascent adhesions in migrating cells. We show that nascent adhesions assemble and are stable within the lamellipodium. The assembly is independent of myosin II but its rate is proportional to the protrusion rate and requires actin polymerization. At the lamellipodium back, the nascent adhesions either disassemble or mature through growth and elongation. Maturation occurs along an alpha-actinin-actin template that elongates centripetally from nascent adhesions. Alpha-Actinin mediates the formation of the template and organization of adhesions associated with actin filaments, suggesting that actin crosslinking has a major role in this process. Adhesion maturation also requires myosin II. Rescue of a myosin IIA knockdown with an actin-bound but motor-inhibited mutant of myosin IIA shows that the actin crosslinking function of myosin II mediates initial adhesion maturation. From these studies, we have developed a model for adhesion assembly that clarifies the relative contributions of myosin II and actin polymerization and organization.


Asunto(s)
Actinina/metabolismo , Actinas/metabolismo , Animales , Células CHO , Adhesión Celular , Polaridad Celular , Cricetinae , Cricetulus , Reactivos de Enlaces Cruzados/metabolismo , Humanos , Modelos Biológicos , Miosina Tipo IIA no Muscular/metabolismo , Seudópodos/metabolismo , Ratas
2.
Nat Cell Biol ; 6(2): 154-61, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14743221

RESUMEN

Cell migration is a complex, highly regulated process that involves the continuous formation and disassembly of adhesions (adhesion turnover). Adhesion formation takes place at the leading edge of protrusions, whereas disassembly occurs both at the cell rear and at the base of protrusions. Despite the importance of these processes in migration, the mechanisms that regulate adhesion formation and disassembly remain largely unknown. Here we develop quantitative assays to measure the rate of incorporation of molecules into adhesions and the departure of these proteins from adhesions. Using these assays, we show that kinases and adaptor molecules, including focal adhesion kinase (FAK), Src, p130CAS, paxillin, extracellular signal-regulated kinase (ERK) and myosin light-chain kinase (MLCK) are critical for adhesion turnover at the cell front, a process central to migration.


Asunto(s)
Adhesión Celular/fisiología , Proteínas del Citoesqueleto/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Fosfoproteínas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas , Transducción de Señal/fisiología , Familia-src Quinasas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Movimiento Celular/fisiología , Proteína Sustrato Asociada a CrK , Proteínas del Citoesqueleto/genética , Fibroblastos/citología , Fibroblastos/fisiología , Quinasa 1 de Adhesión Focal , Proteína-Tirosina Quinasas de Adhesión Focal , Ratones , Proteínas Quinasas Activadas por Mitógenos/genética , Quinasa de Cadena Ligera de Miosina/genética , Paxillin , Fosfoproteínas/genética , Proteínas Tirosina Quinasas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína p130 Similar a la del Retinoblastoma , Familia-src Quinasas/genética
3.
J Cell Biol ; 209(1): 23-32, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25869664

RESUMEN

In this study, we show that the role of nonmuscle myosin II (NMII)-B in front-back migratory cell polarity is controlled by a short stretch of amino acids containing five serines (1935-1941). This motif resides near the junction between the C terminus helical and nonhelical tail domains. Removal of this motif inhibited NMII-B assembly, whereas its insertion into NMII-A endowed an NMII-B-like ability to generate large actomyosin bundles that determine the rear of the cell. Phosphomimetic mutation of the five serines also inhibited NMII-B assembly, rendering it unable to support front-back polarization. Mass spectrometric analysis showed that several of these serines are phosphorylated in live cells. Single-site mutagenesis showed that serine 1935 is a major regulatory site of NMII-B function. These data reveal a novel regulatory mechanism of NMII in polarized migrating cells by identifying a key molecular determinant that confers NMII isoform functional specificity.


Asunto(s)
Polaridad Celular , Cadenas Pesadas de Miosina/fisiología , Miosina Tipo IIB no Muscular/fisiología , Actomiosina/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Adhesión Celular , Movimiento Celular , Cricetinae , Cricetulus , Células HEK293 , Humanos , Datos de Secuencia Molecular , Cadenas Pesadas de Miosina/química , Miosina Tipo IIB no Muscular/química , Estabilidad Proteica , Estructura Terciaria de Proteína
4.
PLoS One ; 9(7): e101770, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25007055

RESUMEN

Dendritic spines are micron-sized protrusions that constitute the primary post-synaptic sites of excitatory neurotransmission in the brain. Spines mature from a filopodia-like protrusion into a mushroom-shaped morphology with a post-synaptic density (PSD) at its tip. Modulation of the actin cytoskeleton drives these morphological changes as well as the spine dynamics that underlie learning and memory. Several PSD molecules respond to glutamate receptor activation and relay signals to the underlying actin cytoskeleton to regulate the structural changes in spine and PSD morphology. α-Actinin-2 is an actin filament cross-linker, which localizes to dendritic spines, enriched within the post-synaptic density, and implicated in actin organization. We show that loss of α-actinin-2 in rat hippocampal neurons creates an increased density of immature, filopodia-like protrusions that fail to mature into a mushroom-shaped spine during development. α-Actinin-2 knockdown also prevents the recruitment and stabilization of the PSD in the spine, resulting in failure of synapse formation, and an inability to structurally respond to chemical stimulation of the N-methyl-D-aspartate (NMDA)-type glutamate receptor. The Ca2+-insensitive EF-hand motif in α-actinin-2 is necessary for the molecule's function in regulating spine morphology and PSD assembly, since exchanging it for the similar but Ca2+-sensitive domain from α-actinin-4, another α-actinin isoform, inhibits its function. Furthermore, when the Ca2+-insensitive domain from α-actinin-2 is inserted into α-actinin-4 and expressed in neurons, it creates mature spines. These observations support a model whereby α-actinin-2, partially through its Ca2+-insensitive EF-hand motif, nucleates PSD formation via F-actin organization and modulates spine maturation to mediate synaptogenesis.


Asunto(s)
Actinina/fisiología , Espinas Dendríticas/metabolismo , Hipocampo/citología , Secuencias de Aminoácidos , Animales , Células Cultivadas , Espinas Dendríticas/ultraestructura , Transporte de Proteínas , Ratas
5.
J Cell Biol ; 193(2): 381-96, 2011 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-21482721

RESUMEN

Migratory front-back polarity emerges from the cooperative effect of myosin IIA (MIIA) and IIB (MIIB) on adhesive signaling. We demonstrate here that, during polarization, MIIA and MIIB coordinately promote localized actomyosin bundling, which generates large, stable adhesions that do not signal to Rac and thereby form the cell rear. MIIA formed dynamic actomyosin proto-bundles that mark the cell rear during spreading; it also bound to actin filament bundles associated with initial adhesion maturation in protrusions. Subsequent incorporation of MIIB stabilized the adhesions and actomyosin filaments with which it associated and formed a stable, extended rear. These adhesions did not turn over and no longer signal to Rac. Microtubules fine-tuned the polarity by positioning the front opposite the MIIA/MIIB-specified rear. Decreased Rac signaling in the vicinity of the MIIA/MIIB-stabilized proto-bundles and adhesions was accompanied by the loss of Rac guanine nucleotide exchange factor (GEFs), like ßPIX and DOCK180, and by inhibited phosphorylation of key residues on adhesion proteins that recruit and activate Rac GEFs. These observations lead to a model for front-back polarity through local GEF depletion.


Asunto(s)
Movimiento Celular , Polaridad Celular , Miosina Tipo IIA no Muscular/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Transducción de Señal , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Animales , Células CHO , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular/fisiología , Cricetinae , Cricetulus , Femenino , Factores de Intercambio de Guanina Nucleótido/metabolismo , Fosforilación , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA