Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Rev ; 124(12): 7976-8008, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38801719

RESUMEN

Transfer ribonucleic acid (tRNA) therapeutics will provide personalized and mutation specific medicines to treat human genetic diseases for which no cures currently exist. The tRNAs are a family of adaptor molecules that interpret the nucleic acid sequences in our genes into the amino acid sequences of proteins that dictate cell function. Humans encode more than 600 tRNA genes. Interestingly, even healthy individuals contain some mutant tRNAs that make mistakes. Missense suppressor tRNAs insert the wrong amino acid in proteins, and nonsense suppressor tRNAs read through premature stop signals to generate full length proteins. Mutations that underlie many human diseases, including neurodegenerative diseases, cancers, and diverse rare genetic disorders, result from missense or nonsense mutations. Thus, specific tRNA variants can be strategically deployed as therapeutic agents to correct genetic defects. We review the mechanisms of tRNA therapeutic activity, the nature of the therapeutic window for nonsense and missense suppression as well as wild-type tRNA supplementation. We discuss the challenges and promises of delivering tRNAs as synthetic RNAs or as gene therapies. Together, tRNA medicines will provide novel treatments for common and rare genetic diseases in humans.


Asunto(s)
ARN de Transferencia , Humanos , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN de Transferencia/química , Animales , Terapia Genética/métodos , Enfermedades Genéticas Congénitas/terapia , Enfermedades Genéticas Congénitas/genética
2.
Hum Mol Genet ; 32(5): 810-824, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36164730

RESUMEN

Aminoacyl-tRNA synthetases are essential enzymes responsible for charging amino acids onto cognate tRNAs during protein synthesis. In histidyl-tRNA synthetase (HARS), autosomal dominant mutations V133F, V155G, Y330C and S356N in the HARS catalytic domain cause Charcot-Marie-Tooth disease type 2 W (CMT2W), while tRNA-binding domain mutation Y454S causes recessive Usher syndrome type IIIB. In a yeast model, all human HARS variants complemented a genomic deletion of the yeast ortholog HTS1 at high expression levels. CMT2W associated mutations, but not Y454S, resulted in reduced growth. We show mistranslation of histidine to glutamine and threonine in V155G and S356N but not Y330C mutants in yeast. Mistranslating V155G and S356N mutants lead to accumulation of insoluble proteins, which was rescued by histidine. Mutants V133F and Y330C showed the most significant growth defect and decreased HARS abundance in cells. Here, histidine supplementation led to insoluble protein aggregation and further reduced viability, indicating histidine toxicity associated with these mutants. V133F proteins displayed reduced thermal stability in vitro, which was rescued by tRNA. Our data will inform future treatment options for HARS patients, where histidine supplementation may either have a toxic or compensating effect depending on the nature of the causative HARS variant.


Asunto(s)
Aminoacil-ARNt Sintetasas , Enfermedad de Charcot-Marie-Tooth , Humanos , Enfermedad de Charcot-Marie-Tooth/genética , Histidina/genética , Saccharomyces cerevisiae/genética , Aminoacil-ARNt Sintetasas/genética , Mutación , ARN de Transferencia/genética , Suplementos Dietéticos
3.
Genes (Basel) ; 14(2)2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36833180

RESUMEN

Histidyl-tRNA synthetase (HARS) ligates histidine to its cognate transfer RNA (tRNAHis). Mutations in HARS cause the human genetic disorders Usher syndrome type 3B (USH3B) and Charcot-Marie-Tooth syndrome type 2W (CMT2W). Treatment for these diseases remains symptomatic, and no disease specific treatments are currently available. Mutations in HARS can lead to destabilization of the enzyme, reduced aminoacylation, and decreased histidine incorporation into the proteome. Other mutations lead to a toxic gain-of-function and mistranslation of non-cognate amino acids in response to histidine codons, which can be rescued by histidine supplementation in vitro. We discuss recent advances in characterizing HARS mutations and potential applications of amino acid and tRNA therapy for future gene and allele specific therapy.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Histidina , Humanos , Histidina/genética , Histidina/metabolismo , Mutación , Histidina-ARNt Ligasa/genética , Enfermedad de Charcot-Marie-Tooth/genética , Aminoacilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA