Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Chembiochem ; 24(7): e202200802, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36734186

RESUMEN

The emergence of drug-resistant pathogens necessitates the development of new countermeasures. In this regard, the introduction of probiotics to directly attack or competitively exclude pathogens presents a useful strategy. Application of this approach requires an understanding of how a probiotic and its target pathogen interact. A key means of probiotic-pathogen interaction involves the production of small molecules called natural products (NPs). Here, we report the use of whole-cell matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry to characterize NP production by candidate probiotics (mouse airway microbiome isolates) when co-cultured with the respiratory pathogen Burkholderia. We found that a Bacillus velezensis strain inhibits growth of and elicits NP production by Burkholderia thailandensis. Dereplication of known NPs detected in the metabolome of this B. velezensis strain suggests that a previously unannotated bioactive compound is involved. Thus, we present the use of whole-cell MALDI as a broadly applicable method for screening the NP composition of microbial co-cultures; this can be combined with other -omics methods to characterize probiotic-pathogen and other microbe-microbe interactions.


Asunto(s)
Metabolómica , Ratones , Animales , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
2.
Nucleic Acids Res ; 48(8): 4052-4065, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32182341

RESUMEN

Integrative genetic elements (IGEs) are mobile multigene DNA units that integrate into and excise from host bacterial genomes. Each IGE usually targets a specific site within a conserved host gene, integrating in a manner that preserves target gene function. However, a small number of bacterial genes are known to be inactivated upon IGE integration and reactivated upon excision, regulating phenotypes of virulence, mutation rate, and terminal differentiation in multicellular bacteria. The list of regulated gene integrity (RGI) cases has been slow-growing because IGEs have been challenging to precisely and comprehensively locate in genomes. We present software (TIGER) that maps IGEs with unprecedented precision and without attB site bias. TIGER uses a comparative genomic, ping-pong BLAST approach, based on the principle that the IGE integration module (i.e. its int-attP region) is cohesive. The resultant IGEs from 2168 genomes, along with integrase phylogenetic analysis and gene inactivation tests, revealed 19 new cases of genes whose integrity is regulated by IGEs (including dut, eccCa1, gntT, hrpB, merA, ompN, prkA, tqsA, traG, yifB, yfaT and ynfE), as well as recovering previously known cases (in sigK, spsM, comK, mlrA and hlb genes). It also recovered known clades of site-promiscuous integrases and identified possible new ones.


Asunto(s)
Elementos Transponibles de ADN , Genes Bacterianos , Programas Informáticos , Algoritmos , Sitios de Ligazón Microbiológica , Genoma Arqueal , Genoma Bacteriano , Genómica/métodos , Integrasas/clasificación , Integrasas/genética , Filogenia , Recombinación Genética
3.
Nucleic Acids Res ; 45(W1): W30-W35, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28472413

RESUMEN

IslandViewer (http://www.pathogenomics.sfu.ca/islandviewer/) is a widely-used webserver for the prediction and interactive visualization of genomic islands (GIs, regions of probable horizontal origin) in bacterial and archaeal genomes. GIs disproportionately encode factors that enhance the adaptability and competitiveness of the microbe within a niche, including virulence factors and other medically or environmentally important adaptations. We report here the release of IslandViewer 4, with novel features to accommodate the needs of larger-scale microbial genomics analysis, while expanding GI predictions and improving its flexible visualization interface. A user management web interface as well as an HTTP API for batch analyses are now provided with a secured authentication to facilitate the submission of larger numbers of genomes and the retrieval of results. In addition, IslandViewer's integrated GI predictions from multiple methods have been improved and expanded by integrating the precise Islander method for pre-computed genomes, as well as an updated IslandPath-DIMOB for both pre-computed and user-supplied custom genome analysis. Finally, pre-computed predictions including virulence factors and antimicrobial resistance are now available for 6193 complete bacterial and archaeal strains publicly available in RefSeq. IslandViewer 4 provides key enhancements to facilitate the analysis of GIs and better understand their role in the evolution of successful environmental microbes and pathogens.


Asunto(s)
Genoma Arqueal , Genoma Bacteriano , Islas Genómicas , Programas Informáticos , Conjuntos de Datos como Asunto , Genes Arqueales , Genes Bacterianos , Genómica , Internet , Interfaz Usuario-Computador
4.
Nucleic Acids Res ; 45(D1): D128-D134, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27794554

RESUMEN

RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNA resources and provides a single entry point for accessing ncRNA sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has integrated twelve new resources, taking the total number of collaborating database to 22, and began importing new types of data, such as modified nucleotides from MODOMICS and PDB. We created new species-specific identifiers that refer to unique RNA sequences within a context of single species. The website has been subject to continuous improvements focusing on text and sequence similarity searches as well as genome browsing functionality. All RNAcentral data is provided for free and is available for browsing, bulk downloads, and programmatic access at http://rnacentral.org/.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , ARN no Traducido/química , Animales , Genómica , Humanos , Nucleótidos/química , Análisis de Secuencia de ARN , Especificidad de la Especie
5.
Nucleic Acids Res ; 44(14): 6830-9, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27378783

RESUMEN

Virulence genes on mobile DNAs such as genomic islands (GIs) and plasmids promote bacterial pathogen emergence. Excision is an early step in GI mobilization, producing a circular GI and a deletion site in the chromosome; circular forms are also known for some bacterial insertion sequences (ISs). The recombinant sequence at the junctions of such circles and deletions can be detected sensitively in high-throughput sequencing data, using new computational methods that enable empirical discovery of mobile DNAs. For the rich mobilome of a hospital Klebsiella pneumoniae strain, circularization junctions (CJs) were detected for six GIs and seven IS types. Our methods revealed differential biology of multiple mobile DNAs, imprecision of integrases and transposases, and differential activity among identical IS copies for IS26, ISKpn18 and ISKpn21 Using the resistance of circular dsDNA molecules to exonuclease, internally calibrated with the native plasmids, showed that not all molecules bearing GI CJs were circular. Transpositions were also detected, revealing replicon preference (ISKpn18 prefers a conjugative IncA/C2 plasmid), local action (IS26), regional preferences, selection (against capsule synthesis) and IS polarity inversion. Efficient discovery and global characterization of numerous mobile elements per experiment improves accounting for the new gene combinations that arise in emerging pathogens.


Asunto(s)
Islas Genómicas/genética , Genómica/métodos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidad , Plásmidos/genética , Secuencia de Bases , Elementos Transponibles de ADN/genética , ADN Bacteriano/genética , ADN Circular/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Pruebas de Sensibilidad Microbiana , Mutagénesis Insercional/genética , Replicón/genética , Eliminación de Secuencia , Factores de Tiempo
6.
Nucleic Acids Res ; 43(Database issue): D138-40, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25378311

RESUMEN

The transfer-messenger RNA (tmRNA) and its partner protein SmpB act together in resolving problems arising when translating bacterial ribosomes reach the end of mRNA with no stop codon. Their genes have been found in nearly all bacterial genomes and in some organelles. The tmRNA Website serves tmRNA sequences, alignments and feature annotations, and has recently moved to http://bioinformatics.sandia.gov/tmrna/. New features include software used to find the sequences, an update raising the number of unique tmRNA sequences from 492 to 1716, and a database of SmpB sequences which are served along with the tmRNA sequence from the same organism.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , ARN Bacteriano/química , Genoma Bacteriano , Internet , ARN Bacteriano/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Alineación de Secuencia , Análisis de Secuencia de ARN
7.
Nucleic Acids Res ; 43(Database issue): D48-53, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25378302

RESUMEN

Genomic islands are mobile DNAs that are major agents of bacterial and archaeal evolution. Integration into prokaryotic chromosomes usually occurs site-specifically at tRNA or tmRNA gene (together, tDNA) targets, catalyzed by tyrosine integrases. This splits the target gene, yet sequences within the island restore the disrupted gene; the regenerated target and its displaced fragment precisely mark the endpoints of the island. We applied this principle to search for islands in genomic DNA sequences. Our algorithm identifies tDNAs, finds fragments of those tDNAs in the same replicon and removes unlikely candidate islands through a series of filters. A search for islands in 2168 whole prokaryotic genomes produced 3919 candidates. The website Islander (recently moved to http://bioinformatics.sandia.gov/islander/) presents these precisely mapped candidate islands, the gene content and the island sequence. The algorithm further insists that each island encode an integrase, and attachment site sequence identity is carefully noted; therefore, the database also serves in the study of integrase site-specificity and its evolution.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Islas Genómicas , ARN Bacteriano/genética , ARN de Transferencia/genética , Algoritmos , Genes Arqueales , Genes Bacterianos , Integrasas/genética , Internet , Filogenia , Replicón
8.
Nucleic Acids Res ; 43(Database issue): D123-9, 2015 01.
Artículo en Inglés | MEDLINE | ID: mdl-25352543

RESUMEN

The field of non-coding RNA biology has been hampered by the lack of availability of a comprehensive, up-to-date collection of accessioned RNA sequences. Here we present the first release of RNAcentral, a database that collates and integrates information from an international consortium of established RNA sequence databases. The initial release contains over 8.1 million sequences, including representatives of all major functional classes. A web portal (http://rnacentral.org) provides free access to data, search functionality, cross-references, source code and an integrated genome browser for selected species.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , ARN no Traducido/química , Mapeo Cromosómico , Humanos , Internet , ARN no Traducido/genética , Análisis de Secuencia de ARN
9.
Infect Immun ; 83(7): 2672-85, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25895974

RESUMEN

Yersinia enterocolitica is typically considered an extracellular pathogen; however, during the course of an infection, a significant number of bacteria are stably maintained within host cell vacuoles. Little is known about this population and the role it plays during an infection. To address this question and to elucidate the spatially and temporally dynamic gene expression patterns of Y. enterocolitica biovar 1B through the course of an in vitro infection, transcriptome sequencing and differential gene expression analysis of bacteria infecting murine macrophage cells were performed under four distinct conditions. Bacteria were first grown in a nutrient-rich medium at 26 °C to establish a baseline of gene expression that is unrelated to infection. The transcriptomes of these bacteria were then compared to bacteria grown in a conditioned cell culture medium at 37 °C to identify genes that were differentially expressed in response to the increased temperature and medium but not in response to host cells. Infections were then performed, and the transcriptomes of bacteria found on the extracellular surface and intracellular compartments were analyzed individually. The upregulated genes revealed potential roles for a variety of systems in promoting intracellular virulence, including the Ysa type III secretion system, the Yts2 type II secretion system, and the Tad pilus. It was further determined that mutants of each of these systems had decreased virulence while infecting macrophages. Overall, these results reveal the complete set of genes expressed by Y. enterocolitica in response to infection and provide the groundwork for future virulence studies.


Asunto(s)
Perfilación de la Expresión Génica , Macrófagos/microbiología , Viabilidad Microbiana , Yersinia enterocolitica/crecimiento & desarrollo , Yersinia enterocolitica/genética , Animales , Células Cultivadas , Técnicas de Inactivación de Genes , Ratones , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
10.
Environ Microbiol ; 17(12): 4965-78, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26279186

RESUMEN

Genes associated with elevated oxidative enzyme activities in arid systems have not been well characterized. To link measured oxidative activities with specific enzymes, we assembled protein-coding reads from the rhizospheres (RHZ) of two arid land grasses. Targeted gene scans for open reading frames, encoding genes potentially involved in lignin modification, resulted in 127 distinct assembly products. The putative genes included those significantly similar to Class II secretory fungal peroxidases. These genes are expressed at sufficiently high levels for assembly, annotation and differentiation across experimental conditions, and they demonstrate the interplay of root systems, environment and plant microbiomes. The genes assembled also included copper-dependent lytic polysaccharide monooxygenases. We detail the enzymes in the host grass RHZs and present a preliminary taxonomic microhabitat characterization. Our findings provide support for biologically mediated Fenton chemistry in the root zones of desert grasses, and provide insight into arid land carbon flow. These results also demonstrate a hyperdiverse microbial community. Both ribosomal RNA and messenger RNA sequences were dominated by bacteria, followed by fungal sequence abundance. Among the notable fungal sequences were those from the members of the arbuscular mycorrhizal fungi (Glomeromycota), which though abundant in this study, we rarely observed in previous PCR-based surveys.


Asunto(s)
Bacterias/genética , Glomeromycota/genética , Lignina/metabolismo , Micorrizas/metabolismo , Raíces de Plantas/microbiología , Poaceae/microbiología , Rizosfera , Bacterias/aislamiento & purificación , Glomeromycota/aislamiento & purificación , Micorrizas/genética , Oxidación-Reducción , Microbiología del Suelo
11.
J Bacteriol ; 196(5): 920-30, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24336939

RESUMEN

Brucella species include important zoonotic pathogens that have a substantial impact on both agriculture and human health throughout the world. Brucellae are thought of as "stealth pathogens" that escape recognition by the host innate immune response, modulate the acquired immune response, and evade intracellular destruction. We analyzed the genome sequences of members of the family Brucellaceae to assess its evolutionary history from likely free-living soil-based progenitors into highly successful intracellular pathogens. Phylogenetic analysis split the genus into two groups: recently identified and early-dividing "atypical" strains and a highly conserved "classical" core clade containing the major pathogenic species. Lateral gene transfer events brought unique genomic regions into Brucella that differentiated them from Ochrobactrum and allowed the stepwise acquisition of virulence factors that include a type IV secretion system, a perosamine-based O antigen, and systems for sequestering metal ions that are absent in progenitors. Subsequent radiation within the core Brucella resulted in lineages that appear to have evolved within their preferred mammalian hosts, restricting their virulence to become stealth pathogens capable of causing long-term chronic infections.


Asunto(s)
Evolución Biológica , Brucellaceae/genética , Brucellaceae/patogenicidad , Genoma Bacteriano , Genómica/métodos , Filogenia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Virulencia
12.
Pol J Microbiol ; 63(2): 245-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25115120

RESUMEN

The class Acidithiobacillia was established using multiprotein phylogenetic analysis of all the available genomes of the genus Acidithiobacillus (comprising Family I, the Acidithiobacillaceae, of the Acidithiobacillales, the order created for Bergey's Manual of Systematic Bacteriology), and for representative genomes of all available bacterial orders. The Acidithiobacillales contain a second family, the Thermithiobacillaceae, represented by Thermithiobacillus tepidarius, and created on the basis of nearest neighbour 16S ribosomal RNA gene sequence similarities. This could not be included in the original multiprotein analysis as no genome sequence for Thermithio bacillus was available. The publication of the genome sequence of Thermithiobacillus tepidarius in 2013 has enabled phylogenetic assessment of this organism by comparative multigenome analysis. This shows definitively that Thermithiobacillus is a member of the class Acidithiobacillia, distinct from the Acidithiobacillus genus, and confirms it to represent a second family within the Acidithiobacillia.


Asunto(s)
Acidithiobacillus/clasificación , Gammaproteobacteria/clasificación , Acidithiobacillus/genética , ADN Bacteriano/genética , Gammaproteobacteria/genética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética
13.
PLoS One ; 19(3): e0298641, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478526

RESUMEN

BACKGROUND: Genomic islands (GIs) are mobile genetic elements that integrate site-specifically into bacterial chromosomes, bearing genes that affect phenotypes such as pathogenicity and metabolism. GIs typically occur sporadically among related bacterial strains, enabling comparative genomic approaches to GI identification. For a candidate GI in a query genome, the number of reference genomes with a precise deletion of the GI serves as a support value for the GI. Our comparative software for GI identification was slowed by our original use of large reference genome databases (DBs). Here we explore smaller species-focused DBs. RESULTS: With increasing DB size, recovery of our reliable prophage GI calls reached a plateau, while recovery of less reliable GI calls (FPs) increased rapidly as DB sizes exceeded ~500 genomes; i.e., overlarge DBs can increase FP rates. Paradoxically, relative to prophages, FPs were both more frequently supported only by genomes outside the species and more frequently supported only by genomes inside the species; this may be due to their generally lower support values. Setting a DB size limit for our SMAll Ranked Tailored (SMART) DB design speeded runtime ~65-fold. Strictly intra-species DBs would tend to lower yields of prophages for small species (with few genomes available); simulations with large species showed that this could be partially overcome by reaching outside the species to closely related taxa, without an FP burden. Employing such taxonomic outreach in DB design generated redundancy in the DB set; as few as 2984 DBs were needed to cover all 47894 prokaryotic species. CONCLUSIONS: Runtime decreased dramatically with SMART DB design, with only minor losses of prophages. We also describe potential utility in other comparative genomics projects.


Asunto(s)
Genoma Bacteriano , Islas Genómicas , Genómica , Bacterias/genética , Células Procariotas , Profagos/genética
14.
RNA ; 17(11): 1941-6, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21940779

RESUMEN

During the last decade there has been a great increase in the number of noncoding RNA genes identified, including new classes such as microRNAs and piRNAs. There is also a large growth in the amount of experimental characterization of these RNA components. Despite this growth in information, it is still difficult for researchers to access RNA data, because key data resources for noncoding RNAs have not yet been created. The most pressing omission is the lack of a comprehensive RNA sequence database, much like UniProt, which provides a comprehensive set of protein knowledge. In this article we propose the creation of a new open public resource that we term RNAcentral, which will contain a comprehensive collection of RNA sequences and fill an important gap in the provision of biomedical databases. We envision RNA researchers from all over the world joining a federated RNAcentral network, contributing specialized knowledge and databases. RNAcentral would centralize key data that are currently held across a variety of databases, allowing researchers instant access to a single, unified resource. This resource would facilitate the next generation of RNA research and help drive further discoveries, including those that improve food production and human and animal health. We encourage additional RNA database resources and research groups to join this effort. We aim to obtain international network funding to further this endeavor.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , ARN/química , Animales , Secuencia de Bases , Humanos
15.
Int J Syst Evol Microbiol ; 63(Pt 8): 2901-2906, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23334881

RESUMEN

The order Acidithiobacillales was previously assigned to the class Gammaproteobacteria. Recent analyses have indicated that this order actually lies outside all the proteobacterial classes, as a sister group to the combined classes Betaproteobacteria and Gammaproteobacteria. We now confirm this result with multiprotein phylogenetic analysis of all the available genomes of members of the order Acidithiobacillales and representatives of all available bacterial orders, and propose the new proteobacterial class, Acidithiobacillia, with the type order Acidithiobacillales, comprising the families Acidithiobacillaceae and Thermithiobacillaceae with the type genus Acidithiobacillus.


Asunto(s)
Gammaproteobacteria/clasificación , Genoma Bacteriano , Filogenia , Composición de Base , ADN Bacteriano/genética , Gammaproteobacteria/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
16.
RNA Biol ; 10(4): 502-15, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23558773

RESUMEN

Use of second generation sequencing (SGS) technologies for transcriptional profiling (RNA-Seq) has revolutionized transcriptomics, enabling measurement of RNA abundances with unprecedented specificity and sensitivity and the discovery of novel RNA species. Preparation of RNA-Seq libraries requires conversion of the RNA starting material into cDNA flanked by platform-specific adaptor sequences. Each of the published methods and commercial kits currently available for RNA-Seq library preparation suffers from at least one major drawback, including long processing times, large starting material requirements, uneven coverage, loss of strand information and high cost. We report the development of a new RNA-Seq library preparation technique that produces representative, strand-specific RNA-Seq libraries from small amounts of starting material in a fast, simple and cost-effective manner. Additionally, we have developed a new quantitative PCR-based assay for precisely determining the number of PCR cycles to perform for optimal enrichment of the final library, a key step in all SGS library preparation workflows.


Asunto(s)
Escherichia coli/genética , Perfilación de la Expresión Génica/métodos , Biblioteca de Genes , Reacción en Cadena de la Polimerasa/métodos , Transcripción Reversa , Análisis de Secuencia de ARN/métodos , Secuencia de Bases , Línea Celular Tumoral , Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos
17.
NAR Genom Bioinform ; 5(2): lqad036, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37081865

RESUMEN

Satellites such as phage-induced chromosomal islands (PICIs) are mobile genetic elements relying on helper phages for their mobilization, through trans-regulatory interactions. We discovered a PICI with a more intimate cis-regulatory configuration, integrated within a late gene of its helper prophage. This helper-embedded PICI (HE-PICI) configuration delays expression of the interrupted helper late gene until the satellite excises and provides passive helper-driven components to both HE-PICI replication and late transcription. Upon induction of a helper-satellite composite, precise excision of the entire composite was observed, followed by composite replication, then satellite excision. We mapped 491 additional HE-PICIs to one of 14 sites in cognates of phage lambda late genes. Associated integrases form a single phylogenetic clade with subclades respecting the 14 site groups, exhibiting repeated tropism for prophage late genes as new integration sites evolve. Four ordered zones in a general gram-negative PICI genome organization are: an integration zone encoding integrase and AlpA, a dynamic zone encoding members of the Bro-N network of domain-swapping DNA-interactive proteins and immunity repressor RNAs, a replication zone, and a dynamic late zone in which clusters as large as 17 consecutive helper prophage late genes have been captured. Helper-embedded satellites present new dimensions in satellite/helper relationships.

18.
Algorithms Mol Biol ; 18(1): 21, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062452

RESUMEN

BACKGROUND: Adding sequences into an existing (possibly user-provided) alignment has multiple applications, including updating a large alignment with new data, adding sequences into a constraint alignment constructed using biological knowledge, or computing alignments in the presence of sequence length heterogeneity. Although this is a natural problem, only a few tools have been developed to use this information with high fidelity. RESULTS: We present EMMA (Extending Multiple alignments using MAFFT--add) for the problem of adding a set of unaligned sequences into a multiple sequence alignment (i.e., a constraint alignment). EMMA builds on MAFFT--add, which is also designed to add sequences into a given constraint alignment. EMMA improves on MAFFT--add methods by using a divide-and-conquer framework to scale its most accurate version, MAFFT-linsi--add, to constraint alignments with many sequences. We show that EMMA has an accuracy advantage over other techniques for adding sequences into alignments under many realistic conditions and can scale to large datasets with high accuracy (hundreds of thousands of sequences). EMMA is available at https://github.com/c5shen/EMMA . CONCLUSIONS: EMMA is a new tool that provides high accuracy and scalability for adding sequences into an existing alignment.

19.
Front Microbiol ; 14: 1271836, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37920264

RESUMEN

The natural assemblage of a symbiotic bacterial microbiome (bacteriome) with microalgae in marine ecosystems is now being investigated as a means to increase algal productivity for industry. When algae are grown in open pond settings, biological contamination causes an estimated 30% loss of the algal crop. Therefore, new crop protection strategies that do not disrupt the native algal bacteriome are needed to produce reliable, high-yield algal biomass. Bacteriophages offer an unexplored solution to treat bacterial pathogenicity in algal cultures because they can eliminate a single species without affecting the bacteriome. To address this, we identified a highly virulent pathogen of the microalga Nannochloropsis gaditana, the bacterium Bacillus safensis, and demonstrated rescue of the microalgae from the pathogen using phage. 16S rRNA amplicon sequencing showed that phage treatment did not alter the composition of the bacteriome. It is widely suspected that the algal bacteriome could play a protective role against bacterial pathogens. To test this, we compared the susceptibility of a bacteriome-attenuated N. gaditana culture challenged with B. safensis to a N. gaditana culture carrying a growth-promoting bacteriome. We showed that the loss of the bacteriome increased the susceptibility of N. gaditana to the pathogen. Transplanting the microalgal bacteriome to the bacteriome-attenuated culture reconstituted the protective effect of the bacteriome. Finally, the success of phage treatment was dependent on the presence of beneficial bacteriome. This study introduces two synergistic countermeasures against bacterial pathogenicity in algal cultures and a tractable model for studying interactions between microalgae, phages, pathogens, and the algae microbiome.

20.
J Bacteriol ; 194(2): 376-94, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22056929

RESUMEN

We present the draft genome for the Rickettsia endosymbiont of Ixodes scapularis (REIS), a symbiont of the deer tick vector of Lyme disease in North America. Among Rickettsia species (Alphaproteobacteria: Rickettsiales), REIS has the largest genome sequenced to date (>2 Mb) and contains 2,309 genes across the chromosome and four plasmids (pREIS1 to pREIS4). The most remarkable finding within the REIS genome is the extraordinary proliferation of mobile genetic elements (MGEs), which contributes to a limited synteny with other Rickettsia genomes. In particular, an integrative conjugative element named RAGE (for Rickettsiales amplified genetic element), previously identified in scrub typhus rickettsiae (Orientia tsutsugamushi) genomes, is present on both the REIS chromosome and plasmids. Unlike the pseudogene-laden RAGEs of O. tsutsugamushi, REIS encodes nine conserved RAGEs that include F-like type IV secretion systems similar to that of the tra genes encoded in the Rickettsia bellii and R. massiliae genomes. An unparalleled abundance of encoded transposases (>650) relative to genome size, together with the RAGEs and other MGEs, comprise ~35% of the total genome, making REIS one of the most plastic and repetitive bacterial genomes sequenced to date. We present evidence that conserved rickettsial genes associated with an intracellular lifestyle were acquired via MGEs, especially the RAGE, through a continuum of genomic invasions. Robust phylogeny estimation suggests REIS is ancestral to the virulent spotted fever group of rickettsiae. As REIS is not known to invade vertebrate cells and has no known pathogenic effects on I. scapularis, its genome sequence provides insight on the origin of mechanisms of rickettsial pathogenicity.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/fisiología , Genoma Bacteriano , Secuencias Repetitivas Esparcidas , Ixodes/microbiología , Rickettsia/genética , Animales , Vectores Arácnidos/microbiología , Evolución Biológica , Mapeo Cromosómico , Cromosomas Bacterianos , Datos de Secuencia Molecular , Plásmidos , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA