Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 17(44): 29747-52, 2015 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-26477586

RESUMEN

The growth and characterisation of a non-planar phthalocyanine (vanadyl phthalocyanine, VOPc) on a complete monolayer (ML) of a planar phthalocyanine (Iron(II) phthalocyanine, FePc) on an Au(111) surface, has been investigated using ultra-high vacuum (UHV) scanning tunnelling microscopy (STM) and low energy electron diffraction (LEED). The surface mesh of the initial FePc monolayer has been determined and shown to correspond to an incommensurate overlayer, not commensurate as previously reported. Ordered islands of VOPc, with (1 × 1) epitaxy, grow on the FePc layer at submonolayer coverages. The individual VOPc molecules occupy sites directly atop the underlying FePc molecules, indicating that significant intermolecular bonding must occur. It is proposed that this interaction implies that the V[double bond, length as m-dash]O points down into the surface, allowing a Fe-O bond to form. The detailed appearance of the STM images of the VOPc molecules is consistent with previous studies in other VOPc growth studies in which this molecular orientation has been proposed.

2.
J Phys Chem C Nanomater Interfaces ; 126(16): 7346-7355, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35521631

RESUMEN

While the phenomenon of metal substrate adatom incorporation into molecular overlayers is generally believed to occur in several systems, the experimental evidence for this relies on the interpretation of scanning tunneling microscopy (STM) images, which can be ambiguous and provides no quantitative structural information. We show that surface X-ray diffraction (SXRD) uniquely provides unambiguous identification of these metal adatoms. We present the results of a detailed structural study of the Au(111)-F4TCNQ system, combining surface characterization by STM, low-energy electron diffraction, and soft X-ray photoelectron spectroscopy with quantitative experimental structural information from normal incidence X-ray standing wave (NIXSW) and SXRD, together with dispersion-corrected density functional theory (DFT) calculations. Excellent agreement is found between the NIXSW data and the DFT calculations regarding the height and conformation of the adsorbed molecule, which has a twisted geometry rather than the previously supposed inverted bowl shape. SXRD measurements provide unequivocal evidence for the presence and location of Au adatoms, while the DFT calculations show this reconstruction to be strongly energetically favored.

3.
J Chem Phys ; 130(6): 064305, 2009 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-19222276

RESUMEN

Fourier transform ion cyclotron resonance mass spectrometry has been employed to study the reactions of gas-phase cationic cobalt clusters, Co(n) (+) (n=4-30), with nitric oxide, NO, and nitrous oxide, N(2)O, under single collision conditions. Isolation of the initial cluster permits detailed investigation of fragmentation channels which characterize the reactions of all but the largest clusters studied. In reaction with N(2)O, most clusters generate the monoxides Co(n)O(+) without fragmentation, cobalt atom loss accompanying only subsequent reactions. By contrast, chemisorption of even a single NO molecule is accompanied by fragmentation of the cluster. The measured rate coefficients for the Co(n) (+)+N(2)O reaction as a function of cluster size are significantly smaller than those calculated using the surface charge capture model, while for NO the rates are comparable. The reactions have been studied under high coverage conditions by storing clusters for extended periods to permit multiple reactions to occur. This leads to interesting chemistry on the surface of the cluster resulting in the formation of stable oxide clusters and/or the decomposition of nitric oxide on the cluster with the resulting loss of molecular nitrogen.

4.
Artículo en Inglés | MEDLINE | ID: mdl-19423895

RESUMEN

The reactions of niobium cluster cations, Nb(+)(n) (n = 2-19), with nitric oxide have been investigated using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR). The overall reaction rate constants are found to be in reasonable agreement with collision rates calculated using the surface charge capture model. The dominant reaction for small clusters (n <9) involves reaction-induced fragmentation resulting in the loss of either NbO or NbN. By contrast, the main reaction observed for the larger clusters (n> 11) is sequential NO chemisorption. Clusters n = 9, 10 exhibit both extremes of behaviour and are the only clusters upon which there is evidence of NO decomposition with N(2) loss observed whenever multiple NO molecules are co-adsorbed. The rate constants for each process have been determined as a function of cluster size.


Asunto(s)
Espectrometría de Masas/métodos , Niobio/química , Óxido Nítrico/química , Adsorción , Cationes/química , Análisis de Fourier , Cinética , Estructura Molecular , Óxidos/química , Teoría Cuántica
5.
Chem Sci ; 7(9): 5647-5656, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30034702

RESUMEN

The strong parallels between coordination chemistry and adsorption on metal surfaces, with molecules and ligands forming local bonds to individual atoms within a metal surface, have been established over many years of study. The recently proposed "surface trans-effect" (STE) appears to be a further manifestation of this analogous behaviour, but so far the true nature of the modified molecule-metal surface bonding has been unclear. The STE could play an important role in determining the reactivities of surface-supported metal-organic complexes, influencing the design of systems for future applications. However, the current understanding of this effect is incomplete and lacks reliable structural parameters with which to benchmark theoretical calculations. Using X-ray standing waves, we demonstrate that ligation of ammonia and water to iron phthalocyanine (FePc) on Ag(111) increases the adsorption height of the central Fe atom; dispersion corrected density functional theory calculations accurately model this structural effect. The calculated charge redistribution in the FePc/H2O electronic structure induced by adsorption shows an accumulation of charge along the σ-bonding direction between the surface, the Fe atom and the water molecule, similar to the redistribution caused by ammonia. This apparent σ-donor nature of the observed STE on Ag(111) is shown to involve bonding to the delocalised metal surface electrons rather than local bonding to one or more surface atoms, thus indicating that this is a true surface trans-effect.

6.
J Phys Chem A ; 110(38): 10992-1000, 2006 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-16986831

RESUMEN

The decomposition of nitric oxide on small charged rhodium clusters Rh(n)(+/-) (6 < n < 30) has been investigated by Fourier transform ion cyclotron resonance mass spectrometry. For both cationic and anionic naked clusters, the rates of reaction with NO increase smoothly with cluster size in the range studied without the dramatic size-dependent fluctuations often associated with the reactions of transition-metal clusters. The cationic clusters react significantly faster than the anions and both exhibit rate constants exceeding collision rates calculated by average dipole orientation theory. Both the approximate magnitude and the trends in reactivity are modeled well by the surface charge capture model recently proposed by Kummerlöwe and Beyer. All clusters studied here exhibit pseudo-first-order kinetics with no sign of biexponential kinetics often interpreted as evidence for multiple isomeric structures. Experiments involving prolonged exposure to NO have revealed interesting size-dependent trends in the mechanism and efficiency of NO decomposition: For most small clusters (n < 17), once two NO molecules are coadsorbed on a cluster, N(2) is evolved, generating the corresponding dioxide cluster. By analogy with experiments on extended surfaces, this observation is interpreted in terms of the dissociative adsorption of NO in the early stages of reaction, generating N atoms that are mobile on the surface of the cluster. For clusters where n < 13, this chemistry, which occurs independently of the cluster charge, repeats until a size-dependent, limiting oxygen coverage is achieved. Following this, NO is observed to adsorb on the oxide cluster without further N(2) evolution. For n = 14-16 no single end-point is observed and reaction products are based on a small range of oxide structures. By contrast, no evidence for N(2) production is observed for clusters n = 13 and n > 16, for which simple sequential NO adsorption dominates the chemistry. Interestingly, there is no evidence for the production of N(2)O or NO(2) on any of the clusters studied. A simple general mechanism is proposed that accounts for all observations. The detailed decomposition mechanisms for each cluster exhibit size (and, by implication, structure) dependent features with Rh(13)(+/-) particularly anomalous by comparison with neighboring clusters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA