Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Clin Sci (Lond) ; 137(8): 697-706, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36661051

RESUMEN

The dicarbonyl compound methylglyoxal (MGO) is a major precursor in the formation of advanced glycation endproducts (AGEs). MGO and AGEs are increased in subjects with diabetes and are associated with fatal and nonfatal cardiovascular disease. Previously, we have shown that plasma MGO concentrations rapidly increase in the postprandial phase, with a higher increase in individuals with type 2 diabetes. In current study, we investigated whether postprandial MGO formation in plasma and tissues originates from exogenous glucose and whether the increased plasma MGO concentration leads to a fast formation of MGO-derived AGEs. We performed a stable isotope-labelled oral glucose tolerance test (OGTT) in 12 healthy males with universally labelled D(+)13C glucose. Analysis of plasma-labelled 13C3 MGO and glucose levels at 11 time-points during the OGTT revealed that the newly formed MGO during OGTT is completely derived from exogenous glucose. Moreover, a fast formation of protein-bound MGO-derived AGEs during the OGTT was observed. In accordance, ex-vivo incubation of MGO with plasma or albumin showed a rapid decrease in MGO and a fast increase in MGO-derived AGEs. In an intraperitoneal glucose tolerance test in C57BL/6J mice, we confirmed that the formation of postprandial MGO is derived from exogenous glucose in plasma and also showed in tissues that MGO is increased and this is also from exogenous glucose. Collectively, increased formation of MGO during a glucose tolerance test arises from exogenous glucose both in plasma and in tissues, and this leads to a fast formation of MGO-derived AGEs.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucosa , Masculino , Animales , Ratones , Prueba de Tolerancia a la Glucosa , Piruvaldehído , Óxido de Magnesio , Productos Finales de Glicación Avanzada , Ratones Endogámicos C57BL
2.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36362314

RESUMEN

Prolyl carboxypeptidase (PRCP) is involved in metabolic disorders by hydrolyzing anorexigenic peptides. A link between serum PRCP activity and obesity has been reported, but its origin/source is still unclear. Previously proven correlations between human serum PRCP activity and the amount of adipose tissue may suggest that adipose tissue is an important source of circulating PRCP. We investigated PRCP activity in visceral, subcutaneous adipose tissue (VAT and SCAT), skeletal muscle tissue and serum of lean and obese men with or without type 2 diabetes (T2D). Correlations between PRCP activity, metabolic and biochemical parameters and immune cell populations were assessed. PRCP activity was the highest in VAT, compared to SCAT, and was very low in skeletal muscle tissue in the overall group. Serum PRCP activity was significantly higher in T2-diabetic obese men, compared to lean and obese non-diabetic men, and was positively correlated with glycemic control. A positive correlation was observed between serum PRCP activity and VAT immune cell populations, which might indicate that circulating PRCP activity is deriving rather from the immune fraction than from adipocytes. In conclusion, PRCP activity was observed in human adipose tissue for the first time and serum PRCP activity is correlated with T2D in obese men.


Asunto(s)
Diabetes Mellitus Tipo 2 , Masculino , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Grasa Subcutánea/metabolismo , Carboxipeptidasas/metabolismo
3.
J Autoimmun ; 124: 102723, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34481107

RESUMEN

The initiation and progression of autoimmune disorders such as multiple sclerosis (MS) is linked to aberrant cholesterol metabolism and overt inflammation. Liver X receptors (LXR) are nuclear receptors that function at the crossroads of cholesterol metabolism and immunity, and their activation is considered a promising therapeutic strategy to attenuate autoimmunity. However, despite clear functional heterogeneity and cell-specific expression profiles, the impact of the individual LXR isoforms on autoimmunity remains poorly understood. Here, we show that LXRα and LXRß have an opposite impact on immune cell function and disease severity in the experimental autoimmune encephalomyelitis model, an experimental MS model. While Lxrα deficiency aggravated disease pathology and severity, absence of Lxrß was protective. Guided by flow cytometry and by using cell-specific knockout models, reduced disease severity in Lxrß-deficient mice was primarily attributed to changes in peripheral T cell physiology and occurred independent from alterations in microglia function. Collectively, our findings indicate that LXR isoforms play functionally non-redundant roles in autoimmunity, potentially having broad implications for the development of LXR-based therapeutic strategies aimed at dampening autoimmunity and neuroinflammation.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Receptores X del Hígado/metabolismo , Microglía/patología , Esclerosis Múltiple/inmunología , Linfocitos T/inmunología , Animales , Autoinmunidad , Colesterol/metabolismo , Modelos Animales de Enfermedad , Humanos , Receptores X del Hígado/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Inflamación Neurogénica
4.
Biochem Biophys Res Commun ; 524(2): 510-515, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32014257

RESUMEN

Mouse models are a crucial and often used tool to provide insight into the underlying mechanisms of human atherosclerosis. However, mice profoundly differ from humans in lipoprotein synthesis and metabolism, key factors in atherosclerotic plaque formation. Mouse models often require genetic and dietary modifications to mimic human pathophysiology, shifting from a high-density lipoprotein to an low-density lipoprotein dominant lipoprotein profile. We examined the suitability of mice with a humanized liver as a model for lipoprotein studies and studies on plaque formation, given the central role of hepatocytes in lipoprotein synthesis and metabolism. Our results show a progressive humanization of the mouse liver and a humanized lipoprotein profile. However, no atherosclerotic plaque formation was observed in the studied time frame, despite presence of functional macrophages and application of a high cholesterol western-type diet. The humanized-liver mouse model therefore might require further modifications to induce atherosclerosis, yet seems a valuable model for in vivo studies on lipoprotein metabolism.


Asunto(s)
Dieta Occidental/efectos adversos , Lípidos/análisis , Hígado/patología , Placa Aterosclerótica/etiología , Animales , Modelos Animales de Enfermedad , Humanos , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología
5.
Liver Int ; 40(5): 1079-1088, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31960587

RESUMEN

BACKGROUND & AIMS: Plasma soluble E-selectin (sE-selectin) is a frequently used biomarker of systemic endothelial dysfunction. The present study explored the relationship between nonalcoholic fatty liver disease (NAFLD) and plasma sE-selectin levels. METHODS: Expression of E-selectin in liver, visceral adipose tissue (VAT) and muscle was studied in relation to plasma sE-selectin in severely obese individuals (n = 74). The course of hepatic E-selectin expression in relation to hepatic steatosis and inflammation was examined in C57BL/6J LDLR-/- mice on a Western-type diet. The relationship between biomarkers of NAFLD, that is, plasma aminotransferase (ALT) and NAFLD susceptibility genes (rs738409 [PNPLA3] and rs1260326 [GCKR]), and plasma sE-selectin was studied in the combined CODAM (n = 571) and Hoorn (n = 694) studies. RESULTS: E-selectin expression in liver, not VAT or muscle, was associated with plasma sE-selectin in severely obese individuals (ß = 0.26; 95% CI: 0.05-0.47). NAFLD severity was associated with hepatic E-selectin expression (P = .02) and plasma sE-selectin (P = .003). LDLR-/- mice on a Western-type diet displayed increased hepatic E-selectin expression that followed the same course as hepatic inflammation, but not steatosis. In the CODAM study, plasma ALT was associated with plasma sE-selectin, independent of potential confounders (ß = 0.25; 95% CI: 0.16-0.34). Both rs738409 and rs1260326 were associated with higher plasma sE-selectin in the combined CODAM and Hoorn studies (P = .01 and P = .004 respectively). CONCLUSIONS: NAFLD and related markers are associated with higher expression of hepatic E-selectin and higher levels of plasma sE-selectin. Further studies are required to investigate the role of E-selectin in the pathogenesis of NAFLD and the applicability of sE-selectin as a plasma biomarker of NAFLD/NASH.


Asunto(s)
Cadherinas/genética , Enfermedad del Hígado Graso no Alcohólico , Proteínas Adaptadoras Transductoras de Señales , Animales , Biomarcadores , Lipasa , Hígado , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Fosfolipasas A2 Calcio-Independiente
6.
J Hepatol ; 70(5): 963-973, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30677458

RESUMEN

BACKGROUND & AIMS: Although the role of inflammation to combat infection is known, the contribution of metabolic changes in response to sepsis is poorly understood. Sepsis induces the release of lipid mediators, many of which activate nuclear receptors such as the peroxisome proliferator-activated receptor (PPAR)α, which controls both lipid metabolism and inflammation. We aimed to elucidate the previously unknown role of hepatic PPARα in the response to sepsis. METHODS: Sepsis was induced by intraperitoneal injection of Escherichia coli in different models of cell-specific Ppara-deficiency and their controls. The systemic and hepatic metabolic response was analyzed using biochemical, transcriptomic and functional assays. PPARα expression was analyzed in livers from elective surgery and critically ill patients and correlated with hepatic gene expression and blood parameters. RESULTS: Both whole body and non-hematopoietic Ppara-deficiency in mice decreased survival upon bacterial infection. Livers of septic Ppara-deficient mice displayed an impaired metabolic shift from glucose to lipid utilization resulting in more severe hypoglycemia, impaired induction of hyperketonemia and increased steatosis due to lower expression of genes involved in fatty acid catabolism and ketogenesis. Hepatocyte-specific deletion of PPARα impaired the metabolic response to sepsis and was sufficient to decrease survival upon bacterial infection. Hepatic PPARA expression was lower in critically ill patients and correlated positively with expression of lipid metabolism genes, but not with systemic inflammatory markers. CONCLUSION: During sepsis, Ppara-deficiency in hepatocytes is deleterious as it impairs the adaptive metabolic shift from glucose to FA utilization. Metabolic control by PPARα in hepatocytes plays a key role in the host defense against infection. LAY SUMMARY: As the main cause of death in critically ill patients, sepsis remains a major health issue lacking efficacious therapies. While current clinical literature suggests an important role for inflammation, metabolic aspects of sepsis have mostly been overlooked. Here, we show that mice with an impaired metabolic response, due to deficiency of the nuclear receptor PPARα in the liver, exhibit enhanced mortality upon bacterial infection despite a similar inflammatory response, suggesting that metabolic interventions may be a viable strategy for improving sepsis outcomes.


Asunto(s)
Adaptación Fisiológica , Hígado/metabolismo , PPAR alfa/fisiología , Sepsis/metabolismo , Animales , Infecciones Bacterianas/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Humanos , Inflamación/etiología , Ratones , Ratones Endogámicos C57BL
7.
Gut ; 67(7): 1317-1327, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29074725

RESUMEN

OBJECTIVE: Obesity is a risk factor for non-alcoholic steatohepatitis (NASH). This risk has been attributed to visceral adipose tissue (vAT) expansion associated with increased proinflammatory mediators. Accumulation of CD11c+ proinflammatory adipose tissue macrophages (ATM) is an important driver of vAT inflammation. We investigated the role of ATMs in hepatic inflammation during NASH development. DESIGN: vAT isolated from lean, obese or ATM-depleted (using clodronate liposomes) obese mice was transplanted to lean ldlr-/- acceptor mice. Systemic and hepatic inflammation was assessed either after 2 weeks on standard chow or after 8 weeks on high cholesterol diet (HCD) to induce NASH. RESULTS: Transplanting donor vAT from obese mice increased HCD-induced hepatic macrophage content compared with lean-transplanted mice, worsening liver damage. ATM depletion prior to vAT transplantation reduced this increased hepatic macrophage accumulation. On chow, vAT transplantation induced a more pronounced increase in circulating and hepatic neutrophil numbers in obese-transplanted than lean-transplanted mice, while ATM depletion prior to vAT transplantation reversed this effect. Microarray analysis of fluorescence-activated cell sorting of CD11c+ and CD11c- macrophages isolated from donor adipose tissue showed that obesity resulted in enhanced expression of neutrophil chemotaxis genes specifically in CD11c+ ATMs. Involvement of the neutrophil chemotaxis proteins, CXCL14 and CXCL16, was confirmed by culturing vAT. In humans, CD11c expression in vAT of obese individuals correlated with vAT expression of neutrophil chemotactic genes and with hepatic expression of neutrophil and macrophage marker genes. CONCLUSION: ATMs from obese vAT induce hepatic macrophage accumulation during NASH development, possibly by enhancing neutrophil recruitment.


Asunto(s)
Tejido Adiposo/patología , Macrófagos/fisiología , Infiltración Neutrófila/fisiología , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/complicaciones , Tejido Adiposo/metabolismo , Animales , Antígenos CD11/metabolismo , Citocinas/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/metabolismo , Obesidad/patología
8.
Cell Mol Life Sci ; 74(8): 1511-1525, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27878326

RESUMEN

BACKGROUND: Viral myocarditis can severely damage the myocardium through excessive infiltration of immune cells. Osteoglycin (OGN) is part of the small leucine-rich repeat proteoglycan (SLRP) family. SLRP's may affect inflammatory and fibrotic processes, but the implication of OGN in cardiac inflammation and the resulting injury upon viral myocarditis is unknown. METHODS AND RESULTS: This study uncovered a previously unidentified 72-kDa variant of OGN that is predominant in cardiac human and mouse samples of viral myocarditis. Its absence in mice significantly decreased cardiac inflammation and injury in Coxsackievirus-B3-induced myocarditis. It also delayed mortality in lipopolysaccharide-induced endotoxemia going along with a reduced systemic production of pro-inflammatory cytokines. This 72-kDa OGN is expressed in the cell membrane of circulating and resident cardiac macrophages and neutrophils. Co-immunoprecipitation and OGN siRNA experiments revealed that this 72-kDa variant activates the toll-like receptor-4 (TLR4) with a concomitant increase in IL-6, TNF-α, IL-1ß, and IL-12 expression. This immune cell activation by OGN occurred via MyD88 and increased phosphorylation of c-jun. Finally, the 72-kDa chondroitin sulfate is the result of O-linked glycosylation of the 32-kDa protein core of OGN. In contrast, the 34-kDa dermatan sulfate-OGN, involved in collagen cross linking, was also the result of O-linked glycosylation. CONCLUSION: The current study discovered a novel 72-kDa chondroitin sulfate-OGN that is specific for innate immune cells. This variant is able to bind and activate TLR4. The absence of OGN decreases cytokine production by both circulating and cardiac leukocytes upon (systemic) LPS exposure, and reduces cardiac inflammation and injury in viral myocarditis.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/inmunología , Leucocitos/patología , Miocarditis/inmunología , Miocarditis/patología , Miocardio/patología , Receptor Toll-Like 4/inmunología , Animales , Citocinas/inmunología , Modelos Animales de Enfermedad , Femenino , Glicosilación , Células HEK293 , Corazón/virología , Humanos , Inmunidad Celular , Inmunidad Innata , Péptidos y Proteínas de Señalización Intercelular/análisis , Leucocitos/inmunología , Leucocitos/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Miocarditis/virología , Miocardio/inmunología
9.
Int J Mol Sci ; 19(5)2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29702605

RESUMEN

Multiple sclerosis (MS) is a demyelinating autoimmune disease of the central nervous system (CNS). The immune response in MS patients leads to the infiltration of immune cells in the CNS and their subsequent activation. Immune cell activation induces a switch towards glycolysis. During glycolysis, the dicarbonyl product methylglyoxal (MGO) is produced. MGO is a glycating agent that can rapidly form advanced glycation endproducts (AGEs). In turn, AGEs are able to induce inflammatory responses. The glyoxalase system is the endogenous defense system of the body to reduce the burden of MGO thereby reducing AGE formation. This system consists of glyoxalase-1 and glyoxalase-2 which are able to detoxify MGO to D-lactate. We investigated whether AGE levels are induced in experimental autoimmune encephalitis (EAE), an inflammatory animal model of MS. Twenty seven days post EAE induction, MGO and AGE (Nε-(carboxymethyl)lysine (CML), Nε-(carboxyethyl)lysine (CEL), 5-hydro-5-methylimidazolone (MG-H1)) levels were significantly increased in the spinal cord of mice subjected to EAE. Yet, pyridoxamine treatment and glyoxalase-1 overexpression were unable to counteract AGE production during EAE and did not influence the clinical course of EAE. In conclusion, AGEs levels increase during EAE in the spinal cord, but AGE-modifying treatments do not inhibit EAE-induced AGE production and do not affect disease progression.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Productos Finales de Glicación Avanzada/sangre , Lactoilglutatión Liasa/metabolismo , Piridoxamina/uso terapéutico , Complejo Vitamínico B/uso terapéutico , Animales , Encéfalo/patología , Encefalomielitis Autoinmune Experimental/terapia , Femenino , Glucólisis , Humanos , Ratones , Ratones Endogámicos C57BL , Piridoxamina/administración & dosificación , Piruvaldehído/sangre , Médula Espinal/patología , Complejo Vitamínico B/administración & dosificación
10.
Curr Opin Lipidol ; 28(5): 419-426, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28759472

RESUMEN

PURPOSE OF REVIEW: The pivotal role of macrophages in experimental atherosclerosis is firmly established, but their contribution to human disease is less well defined. In this review we have outlined the current insights on macrophage phenotypes and their presumed precursors, monocytes, in clinical atherosclerosis, and their association with disease progression. Moreover, we will assess major clinical modifiers of macrophage-mediated plaque inflammation and define the outstanding questions for further study. RECENT FINDINGS: Our survey indicates that macrophage accumulation and status in human plaques are linked with lesion progression and destabilization as well as with symptomatic coronary artery disease. Likewise, levels of their precursors, circulating monocytes were repeatedly seen to associate with atherosclerosis and to predict clinical outcome. Furthermore, the presence and phenotype of both macrophages and monocytes appears to be responsive to the traditional risk factors of atherosclerosis, including hypercholesterolemia, hypertension, and type 2 diabetes, and to treatment thereof, with clear repercussions on disease development. SUMMARY: Although plaque macrophages and their precursor cells do represent attractive targets for treating cardiovascular diseases, this therapeutic avenue requires much deeper understanding of the complexity of macrophage biology in human atherosclerosis than available at present.


Asunto(s)
Aterosclerosis/inmunología , Aterosclerosis/terapia , Macrófagos/citología , Animales , Progresión de la Enfermedad , Humanos , Monocitos/citología , Factores de Riesgo
11.
Eur Heart J ; 37(39): 2993-2997, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27125949

RESUMEN

AIMS: Normalization of hypercholesterolaemia, inflammation, hyperglycaemia, and obesity are main desired targets to prevent cardiovascular clinical events. Here we present a novel regulator of cholesterol metabolism, which simultaneously impacts on glucose intolerance and inflammation. METHODS AND RESULTS: Mice deficient for oxygen sensor HIF-prolyl hydroxylase 1 (PHD1) were backcrossed onto an atherogenic low-density lipoprotein receptor (LDLR) knockout background and atherosclerosis was studied upon 8 weeks of western-type diet. PHD1-/-LDLR-/- mice presented a sharp reduction in VLDL and LDL plasma cholesterol levels. In line, atherosclerotic plaque development, as measured by plaque area, necrotic core expansion and plaque stage was hampered in PHD1-/-LDLR-/- mice. Mechanistically, cholesterol-lowering in PHD1 deficient mice was a result of enhanced cholesterol excretion from blood to intestines and ultimately faeces. Additionally, flow cytometry of whole blood of these mice revealed significantly reduced counts of leucocytes and particularly of Ly6Chigh pro-inflammatory monocytes. In addition, when studying PHD1-/- in diet-induced obesity (14 weeks high-fat diet) mice were less glucose intolerant when compared with WT littermate controls. CONCLUSION: Overall, PHD1 knockout mice display a metabolic phenotype that generally is deemed protective for cardiovascular disease. Future studies should focus on the efficacy, safety, and gender-specific effects of PHD1 inhibition in humans, and unravel the molecular actors responsible for PHD1-driven, likely intestinal, and regulation of cholesterol metabolism.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Hiperglucemia , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxígeno , Prolil Hidroxilasas , Receptores de LDL
12.
Int J Mol Sci ; 18(2)2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28212304

RESUMEN

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS). The activation of inflammatory cells is crucial for the development of MS and is shown to induce intracellular glycolytic metabolism in pro-inflammatory microglia and macrophages, as well as CNS-resident astrocytes. Advanced glycation endproducts (AGEs) are stable endproducts formed by a reaction of the dicarbonyl compounds methylglyoxal (MGO) and glyoxal (GO) with amino acids in proteins, during glycolysis. This suggests that, in MS, MGO-derived AGEs are formed in glycolysis-driven cells. MGO and MGO-derived AGEs can further activate inflammatory cells by binding to the receptor for advanced glycation endproducts (RAGE). Recent studies have revealed that AGEs are increased in the plasma and brain of MS patients. Therefore, AGEs might contribute to the inflammatory status in MS. Moreover, the main detoxification system of dicarbonyl compounds, the glyoxalase system, seems to be affected in MS patients, which may contribute to high MGO-derived AGE levels. Altogether, evidence is emerging for a contributing role of AGEs in the pathology of MS. In this review, we provide an overview of the current knowledge on the involvement of AGEs in MS.


Asunto(s)
Productos Finales de Glicación Avanzada/metabolismo , Esclerosis Múltiple/metabolismo , Piruvaldehído/metabolismo , Inmunidad Adaptativa , Animales , Glucólisis , Humanos , Inmunidad Innata , Peroxidación de Lípido , Esclerosis Múltiple/inmunología , Oxidación-Reducción , Estrés Oxidativo , Receptor para Productos Finales de Glicación Avanzada/metabolismo
13.
Eur Heart J ; 35(17): 1137-46, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24126878

RESUMEN

AIMS: Rupture-prone atherosclerotic plaques are characterized by inflammation and a large necrotic core. Inflammation is linked to high metabolic activity. Advanced glycation endproducts (AGEs) and their major precursor methylglyoxal are formed during high metabolic activity and can have detrimental effects on cellular function and may induce cell death. Therefore, we investigated whether plaque AGEs are increased in human carotid rupture-prone plaques and are associated with plaque inflammation and necrotic core formation. METHODS AND RESULTS: The protein-bound major methylglyoxal-derived AGE 5-hydro-5-methylimidazolone (MG-H1) and N(ε)-(carboxymethyl)lysine (CML) were measured in human carotid endarterectomy specimens (n = 75) with tandem mass spectrometry. MG-H1 and CML levels were associated with rupture-prone plaques, increased protein levels of the inflammatory mediators IL-8 and MCP-1 and with higher MMP-9 activity. Immunohistochemistry showed that AGEs accumulated predominantly in macrophages surrounding the necrotic core and co-localized with cleaved caspase-3. Intra-plaque comparison revealed that glyoxalase-1 (GLO-1), the major methylglyoxal-detoxifying enzyme, mRNA was decreased (-13%, P < 0.05) in ruptured compared with stable plaque segments. In line, in U937 monoctyes, we found reduced (GLO-1) activity (-38%, P < 0.05) and increased MGO (346%, P < 0.05) production after stimulation with the inflammatory mediator TNF. Direct incubation with methylglyoxal increased apoptosis up to two-fold. CONCLUSION: This is the first study showing that AGEs are associated with human rupture-prone plaques. Furthermore, this study suggests a cascade linking inflammation, reduced GLO-1, methylglyoxal- and AGE-accumulation, and subsequent apoptosis. Thereby, AGEs may act as mediators of the progression of stable to rupture-prone plaques, opening a window towards novel treatments and biomarkers to treat cardiovascular diseases.


Asunto(s)
Aneurisma Roto/metabolismo , Enfermedades de las Arterias Carótidas/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Placa Aterosclerótica/metabolismo , Anciano , Animales , Apoptosis/efectos de los fármacos , Hipoxia de la Célula/fisiología , Humanos , Leucocitos Mononucleares/metabolismo , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Fenotipo , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
14.
Circulation ; 128(13): 1420-32, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-23956210

RESUMEN

BACKGROUND: Cardiac hypertrophy and subsequent heart failure triggered by chronic hypertension represent major challenges for cardiovascular research. Beyond neurohormonal and myocyte signaling pathways, growing evidence suggests inflammatory signaling pathways as therapeutically targetable contributors to this process. We recently reported that microRNA-155 is a key mediator of cardiac inflammation and injury in infectious myocarditis. Here, we investigated the impact of microRNA-155 manipulation in hypertensive heart disease. METHODS AND RESULTS: Genetic loss or pharmacological inhibition of the leukocyte-expressed microRNA-155 in mice markedly reduced cardiac inflammation, hypertrophy, and dysfunction on pressure overload. These alterations were macrophage dependent because in vivo cardiomyocyte-specific microRNA-155 manipulation did not affect cardiac hypertrophy or dysfunction, whereas bone marrow transplantation from wild-type mice into microRNA-155 knockout animals rescued the hypertrophic response of the cardiomyocytes and vice versa. In vitro, media from microRNA-155 knockout macrophages blocked the hypertrophic growth of stimulated cardiomyocytes, confirming that macrophages influence myocyte growth in a microRNA-155-dependent paracrine manner. These effects were at least partly mediated by the direct microRNA-155 target suppressor of cytokine signaling 1 (Socs1) because Socs1 knockdown in microRNA-155 knockout macrophages largely restored their hypertrophy-stimulating potency. CONCLUSIONS: Our findings reveal that microRNA-155 expression in macrophages promotes cardiac inflammation, hypertrophy, and failure in response to pressure overload. These data support the causative significance of inflammatory signaling in hypertrophic heart disease and demonstrate the feasibility of therapeutic microRNA targeting of inflammation in heart failure.


Asunto(s)
Cardiomegalia/patología , Insuficiencia Cardíaca/patología , Macrófagos/patología , MicroARNs/genética , Miocitos Cardíacos/patología , Animales , Cardiomegalia/genética , Células Cultivadas , Insuficiencia Cardíaca/genética , Humanos , Inflamación/genética , Inflamación/patología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Ratas
15.
Eur Heart J ; 34(32): 2566-74, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22843443

RESUMEN

AIMS: Peroxisome proliferator-activated receptor (PPAR)-α is a transcription factor controlling lipid metabolism in liver, heart, muscle, and macrophages. Peroxisome proliferator-activated receptor-α activation increases plasma HDL cholesterol and exerts hypotriglyceridaemic actions via the liver. However, the intestine expresses PPAR-α, produces HDL and chylomicrons, and is exposed to diet-derived PPAR-α ligands. Therefore, we examined the effects of PPAR-α activation on intestinal lipid and lipoprotein metabolism. METHODS AND RESULTS: The impact of PPAR-α activation was evaluated in term of HDL-related gene expression in mice, ex vivo in human jejunal biopsies and in Caco-2/TC7 cells. Apolipoprotein-AI/HDL secretion, cholesterol esterification, and trafficking were also studied in vitro. In parallel to improving plasma lipid profiles and increasing liver and intestinal expression of fatty acid oxidation genes, treatment with the dual PPAR-α/δ ligand GFT505 resulted in a more pronounced increase in plasma HDL compared with fenofibrate in mice. GFT505, but not fenofibrate, increased the expression of HDL production genes such as apolipoprotein-AI and ATP-binding cassette A1 transporter in murine intestines. A similar increase was observed upon PPAR-α activation of human biopsies and Caco-2/TC7 cells. Additionally, HDL secretion by Caco-2/TC7 cells increased. Moreover, PPAR-α activation decreased the cholesterol esterification capacity of Caco-2/TC7 cells, modified cholesterol trafficking, and reduced apolipoprotein-B secretion. CONCLUSION: Peroxisome proliferator-activated receptor-α activation reduces cholesterol esterification, suppresses chylomicron, and increases HDL secretion by enterocytes. These results identify the intestine as a target organ of PPAR-α ligands with entero-hepatic tropism to reduce atherogenic dyslipidaemia.


Asunto(s)
Lipoproteínas HDL/metabolismo , PPAR alfa/fisiología , Animales , Apolipoproteínas B/metabolismo , Butiratos/farmacología , Células CACO-2 , Células Cultivadas , Chalconas/farmacología , Enterocitos/metabolismo , Esterificación/fisiología , Ácidos Grasos/metabolismo , Femenino , Humanos , Yeyuno/metabolismo , Ratones , Ratones Noqueados , PPAR alfa/antagonistas & inhibidores , Compuestos de Fenilurea/farmacología , Propionatos/farmacología
16.
Mol Metab ; : 101984, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38972375

RESUMEN

OBJECTIVE: Stable isotope studies have shown that hepatic de novo lipogenesis (DNL) plays an important role in the pathogenesis of intrahepatic lipid (IHL) deposition. Furthermore, previous research has demonstrated that fructose 1-phosphate (F1P) not only serves as a substrate for DNL, but also acts as a signalling metabolite that stimulates DNL from glucose. The aim of this study was to elucidate the mediators of F1P-stimulated DNL, with special focus on two key regulators of intrahepatic glucose metabolism, i.e., glucokinase regulatory protein (GKRP) and carbohydrate response element binding protein (ChREBP). METHODS: Aldolase B deficient mice (Aldob-/-), characterized by hepatocellular F1P accumulation, enhanced DNL, and hepatic steatosis, were either crossed with GKRP deficient mice (Gckr-/-) or treated with short hairpin RNAs directed against hepatic ChREBP. RESULTS: Aldob-/- mice showed higher rates of de novo palmitate synthesis from glucose when compared to wildtype mice (p<0.001). Gckr knockout reduced de novo palmitate synthesis in Aldob-/- mice (p=0.017), without affecting the hepatic mRNA expression of enzymes involved in DNL. In contrast, hepatic ChREBP knockdown normalized the hepatic mRNA expression levels of enzymes involved in DNL and reduced fractional DNL in Aldob-/- mice (p<0.05). Of interest, despite downregulation of DNL in response to Gckr and ChREBP attenuation, no reduction in intrahepatic triglyceride levels was observed. CONCLUSIONS: Both GKRP and ChREBP mediate F1P-stimulated DNL in aldolase B deficient mice. Further studies are needed to unravel the role of GKRP and hepatic ChREBP in regulating IHL accumulation in aldolase B deficiency.

17.
Nutrients ; 16(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38337716

RESUMEN

Endurance exercise training is a promising cardioprotective strategy in type 2 diabetes mellitus (T2DM), but the impact of its intensity is not clear. We aimed to investigate whether and how isocaloric moderate-intensity exercise training (MIT) and high-intensity interval exercise training (HIIT) could prevent the adverse cardiac remodeling and dysfunction that develop T2DM in rats. Male rats received a Western diet (WD) to induce T2DM and underwent a sedentary lifestyle (n = 7), MIT (n = 7) or HIIT (n = 8). Insulin resistance was defined as the HOMA-IR value. Cardiac function was assessed with left ventricular (LV) echocardiography and invasive hemodynamics. A qPCR and histology of LV tissue unraveled underlying mechanisms. We found that MIT and HIIT halted T2DM development compared to in sedentary WD rats (p < 0.05). Both interventions prevented increases in LV end-systolic pressure, wall thickness and interstitial collagen content (p < 0.05). In LV tissue, HIIT tended to upregulate the gene expression of an ROS-generating enzyme (NOX4), while both modalities increased proinflammatory macrophage markers and cytokines (CD86, TNF-α, IL-1ß; p < 0.05). HIIT promoted antioxidant and dicarbonyl defense systems (SOD2, glyoxalase 1; p < 0.05) whereas MIT elevated anti-inflammatory macrophage marker expression (CD206, CD163; p < 0.01). We conclude that both MIT and HIIT limit WD-induced T2DM with diastolic dysfunction and pathological LV hypertrophy, possibly using different adaptive mechanisms.


Asunto(s)
Diabetes Mellitus Tipo 2 , Entrenamiento de Intervalos de Alta Intensidad , Masculino , Ratas , Animales , Diabetes Mellitus Tipo 2/prevención & control , Corazón , Ventrículos Cardíacos , Ecocardiografía , Hemodinámica
18.
Cells ; 13(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38920631

RESUMEN

Microglia activity can drive excessive synaptic loss during the prodromal phase of Alzheimer's disease (AD) and is associated with lowered cyclic adenosine monophosphate (cAMP) due to cAMP phosphodiesterase 4B (PDE4B). This study aimed to investigate whether long-term inhibition of PDE4B by A33 (3 mg/kg/day) can prevent synapse loss and its associated cognitive decline in APPswe/PS1dE9 mice. This model is characterized by a chimeric mouse/human APP with the Swedish mutation and human PSEN1 lacking exon 9 (dE9), both under the control of the mouse prion protein promoter. The effects on cognitive function of prolonged A33 treatment from 20 days to 4 months of age, was assessed at 7-8 months. PDE4B inhibition significantly improved both the working and spatial memory of APPswe/PSdE9 mice after treatment ended. At the cellular level, in vitro inhibition of PDE4B induced microglial filopodia formation, suggesting that regulation of PDE4B activity can counteract microglia activation. Further research is needed to investigate if this could prevent microglia from adopting their 'disease-associated microglia (DAM)' phenotype in vivo. These findings support the possibility that PDE4B is a potential target in combating AD pathology and that early intervention using A33 may be a promising treatment strategy for AD.


Asunto(s)
Enfermedad de Alzheimer , Cognición , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Modelos Animales de Enfermedad , Ratones Transgénicos , Microglía , Inhibidores de Fosfodiesterasa 4 , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Cognición/efectos de los fármacos , Inhibidores de Fosfodiesterasa 4/farmacología , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Inhibidores de Fosfodiesterasa 4/administración & dosificación , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Presenilina-1/genética , Presenilina-1/metabolismo , Humanos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Masculino
19.
J Biol Chem ; 287(26): 21904-13, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22511784

RESUMEN

Obesity is associated with a significantly increased risk for cancer suggesting that adipose tissue dysfunctions might play a crucial role therein. Macrophages play important roles in adipose tissue as well as in cancers. Here, we studied whether human adipose tissue macrophages (ATM) modulate cancer cell function. Therefore, ATM were isolated and compared with monocyte-derived macrophages (MDM) from the same obese patients. ATM, but not MDM, were found to secrete factors inducing inflammation and lipid accumulation in human T47D and HT-29 cancer cells. Gene expression profile comparison of ATM and MDM revealed overexpression of functional clusters, such as cytokine-cytokine receptor interaction (especially CXC-chemokine) signaling as well as cancer-related pathways, in ATM. Comparison with gene expression profiles of human tumor-associated macrophages showed that ATM, but not MDM resemble tumor-associated macrophages. Indirect co-culture experiments demonstrated that factors secreted by preadipocytes, but not mature adipocytes, confer an ATM-like phenotype to MDM. Finally, the concentrations of ATM-secreted factors related to cancer are elevated in serum of obese subjects. In conclusion, ATM may thus modulate the cancer cell phenotype.


Asunto(s)
Adipocitos/citología , Tejido Adiposo/metabolismo , Regulación Neoplásica de la Expresión Génica , Macrófagos/citología , Neoplasias/metabolismo , Compuestos Azo/farmacología , Línea Celular Tumoral , Quimiocinas/metabolismo , Progresión de la Enfermedad , Humanos , Inmunohistoquímica/métodos , Inflamación , Macrófagos/metabolismo , Obesidad/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo
20.
Biochim Biophys Acta ; 1821(5): 809-18, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22056763

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a liver pathology with increasing prevalence due to the obesity epidemic. Hence, NAFLD represents a rising threat to public health. Currently, no effective treatments are available to treat NAFLD and its complications such as cirrhosis and liver cancer. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear receptors which regulate lipid and glucose metabolism as well as inflammation. Here we review recent findings on the pathophysiological role of PPARs in the different stages of NAFLD, from steatosis development to steatohepatitis and fibrosis, as well as the preclinical and clinical evidence for potential therapeutical use of PPAR agonists in the treatment of NAFLD. PPARs play a role in modulating hepatic triglyceride accumulation, a hallmark of the development of NAFLD. Moreover, PPARs may also influence the evolution of reversible steatosis toward irreversible, more advanced lesions. Presently, large controlled trials of long duration are needed to assess the long-term clinical benefits of PPAR agonists in humans. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.


Asunto(s)
Hígado Graso , Hígado , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Triglicéridos/metabolismo , Ensayos Clínicos como Asunto , Hígado Graso/complicaciones , Hígado Graso/diagnóstico , Hígado Graso/tratamiento farmacológico , Hígado Graso/etiología , Hígado Graso/metabolismo , Expresión Génica/efectos de los fármacos , Humanos , Inflamación/metabolismo , Hígado/metabolismo , Hígado/fisiopatología , Enfermedad del Hígado Graso no Alcohólico , Receptores Activados del Proliferador del Peroxisoma/agonistas , Receptores Activados del Proliferador del Peroxisoma/genética , Tiazoles/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA