Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.344
Filtrar
1.
Cell ; 186(4): 803-820.e25, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36738734

RESUMEN

Complex diseases often involve the interplay between genetic and environmental factors. Charcot-Marie-Tooth type 2 neuropathies (CMT2) are a group of genetically heterogeneous disorders, in which similar peripheral neuropathology is inexplicably caused by various mutated genes. Their possible molecular links remain elusive. Here, we found that upon environmental stress, many CMT2-causing mutant proteins adopt similar properties by entering stress granules (SGs), where they aberrantly interact with G3BP and integrate into SG pathways. For example, glycyl-tRNA synthetase (GlyRS) is translocated from the cytoplasm into SGs upon stress, where the mutant GlyRS perturbs the G3BP-centric SG network by aberrantly binding to G3BP. This disrupts SG-mediated stress responses, leading to increased stress vulnerability in motoneurons. Disrupting this aberrant interaction rescues SG abnormalities and alleviates motor deficits in CMT2D mice. These findings reveal a stress-dependent molecular link across diverse CMT2 mutants and provide a conceptual framework for understanding genetic heterogeneity in light of environmental stress.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteínas con Motivos de Reconocimiento de ARN , Gránulos de Estrés , Animales , Ratones , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Citoplasma , Neuronas Motoras , Proteínas con Motivos de Reconocimiento de ARN/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(25): e2400546121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857407

RESUMEN

Reduction of carbon dioxide (CO2) by renewable electricity to produce multicarbon chemicals, such as ethylene (C2H4), continues to be a challenge because of insufficient Faradaic efficiency, low production rates, and complex mechanistic pathways. Here, we report that the rate-determining steps (RDS) on common copper (Cu) surfaces diverge in CO2 electroreduction, leading to distinct catalytic performances. Through a combination of experimental and computational studies, we reveal that C─C bond-making is the RDS on Cu(100), whereas the protonation of *CO with adsorbed water becomes rate-limiting on Cu(111) with a higher energy barrier. On an oxide-derived Cu(100)-dominant Cu catalyst, we reach a high C2H4 Faradaic efficiency of 72%, partial current density of 359 mA cm-2, and long-term stability exceeding 100 h at 500 mA cm-2, greatly outperforming its Cu(111)-rich counterpart. We further demonstrate constant C2H4 selectivity of >60% over 70 h in a membrane electrode assembly electrolyzer with a full-cell energy efficiency of 23.4%.

3.
Proc Natl Acad Sci U S A ; 120(51): e2312876120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38085783

RESUMEN

Electrochemical synthesis of valuable chemicals and feedstocks through carbon dioxide (CO2) reduction in acidic electrolytes can surmount the considerable CO2 loss in alkaline and neutral conditions. However, achieving high productivity, while operating steadily in acidic electrolytes, remains a big challenge owing to the severe competing hydrogen evolution reaction. Here, we show that vertically grown bismuth nanosheets on a gas-diffusion layer can create numerous cavities as electrolyte reservoirs, which confine in situ-generated hydroxide and potassium ions and limit inward proton diffusion, producing locally alkaline environments. Based on this design, we achieve formic acid Faradaic efficiency of 96.3% and partial current density of 471 mA cm-2 at pH 2. When operated in a slim continuous-flow electrolyzer, the system exhibits a full-cell formic acid energy efficiency of 40% and a single pass carbon efficiency of 79% and performs steadily over 50 h. We further demonstrate the production of pure formic acid aqueous solution with a concentration of 4.2 weight %.

4.
J Virol ; 98(4): e0005124, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38466095

RESUMEN

Avian metapneumovirus subgroup C (aMPV/C), an important pathogen causing acute respiratory infection in chickens and turkeys, contributes to substantial economic losses in the poultry industry worldwide. aMPV/C has been reported to induce autophagy, which is beneficial to virus replication. Sequestosome 1 (SQSTM1/P62), a selective autophagic receptor, plays a crucial role in viral replication by clearing ubiquitinated proteins. However, the relationship between SQSTM1-mediated selective autophagy and aMPV/C replication is unclear. In this study, we found that the expression of SQSTM1 negatively regulates aMPV/C replication by reducing viral protein expression and viral titers. Further studies revealed that the interaction between SQSTM1 and aMPV/C M2-2 protein is mediated via the Phox and Bem1 (PB1) domain of the former, which recognizes a ubiquitinated lysine at position 67 of the M2-2 protein, and finally degrades M2-2 via SQSTM1-mediated selective autophagy. Collectively, our results reveal that SQSTM1 degrades M2-2 via a process of selective autophagy to suppress aMPV/C replication, thereby providing novel insights for the prevention and control of aMPV/C infection.IMPORTANCEThe selective autophagy plays an important role in virus replication. As an emerging pathogen of avian respiratory virus, clarification of the effect of SQSTM1, a selective autophagic receptor, on aMPV/C replication in host cells enables us to better understand the viral pathogenesis. Previous study showed that aMPV/C infection reduced the SQSTM1 expression accompanied by virus proliferation, but the specific regulatory mechanism between them was still unclear. In this study, we demonstrated for the first time that SQSTM1 recognizes the 67th amino acid of M2-2 protein by the interaction between them, followed by M2-2 degradation via the SQSTM1-mediated selective autophagy, and finally inhibits aMPV/C replication. This information supplies the mechanism by which SQSTM1 negatively regulates viral replication, and provides new insights for preventing and controlling aMPV/C infection.


Asunto(s)
Autofagia , Aves , Metapneumovirus , Proteolisis , Proteína Sequestosoma-1 , Proteínas Virales , Replicación Viral , Animales , Humanos , Células HEK293 , Metapneumovirus/clasificación , Metapneumovirus/crecimiento & desarrollo , Infecciones por Paramyxoviridae/metabolismo , Infecciones por Paramyxoviridae/veterinaria , Infecciones por Paramyxoviridae/virología , Unión Proteica , Proteína Sequestosoma-1/química , Proteína Sequestosoma-1/metabolismo , Células Vero , Proteínas Virales/química , Proteínas Virales/metabolismo , Aves/virología
5.
J Pathol ; 263(1): 74-88, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38411274

RESUMEN

Fascin actin-bundling protein 1 (Fascin) is highly expressed in a variety of cancers, including esophageal squamous cell carcinoma (ESCC), working as an important oncogenic protein and promoting the migration and invasion of cancer cells by bundling F-actin to facilitate the formation of filopodia and invadopodia. However, it is not clear how exactly the function of Fascin is regulated by acetylation in cancer cells. Here, in ESCC cells, the histone acetyltransferase KAT8 catalyzed Fascin lysine 41 (K41) acetylation, to inhibit Fascin-mediated F-actin bundling and the formation of filopodia and invadopodia. Furthermore, NAD-dependent protein deacetylase sirtuin (SIRT) 7-mediated deacetylation of Fascin-K41 enhances the formation of filopodia and invadopodia, which promotes the migration and invasion of ESCC cells. Clinically, the analysis of cancer and adjacent tissue samples from patients with ESCC showed that Fascin-K41 acetylation was lower in the cancer tissue of patients with lymph node metastasis than in that of patients without lymph node metastasis, and low levels of Fascin-K41 acetylation were associated with a poorer prognosis in patients with ESCC. Importantly, K41 acetylation significantly blocked NP-G2-044, one of the Fascin inhibitors currently being clinically evaluated, suggesting that NP-G2-044 may be more suitable for patients with low levels of Fascin-K41 acetylation, but not suitable for patients with high levels of Fascin-K41 acetylation. © 2024 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Proteínas Portadoras , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Proteínas de Microfilamentos , Sirtuinas , Humanos , Acetilación , Actinas/metabolismo , Línea Celular Tumoral , Neoplasias Esofágicas/patología , Histona Acetiltransferasas/metabolismo , Metástasis Linfática , Sirtuinas/metabolismo
6.
Br J Cancer ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918556

RESUMEN

BACKGROUND: This study aims to develop a stacking model for accurately predicting axillary lymph node (ALN) response to neoadjuvant chemotherapy (NAC) using longitudinal MRI in breast cancer. METHODS: We included patients with node-positive breast cancer who received NAC following surgery from January 2012 to June 2022. We collected MRIs before and after NAC, and extracted radiomics features from the tumour, peritumour, and ALN regions. The Mann-Whitney U test, least absolute shrinkage and selection operator, and Boruta algorithm were used to select features. We utilised machine learning techniques to develop three single-modality models and a stacking model for predicting ALN response to NAC. RESULTS: This study consisted of a training cohort (n = 277), three external validation cohorts (n = 313, 164, and 318), and a prospective cohort (n = 81). Among the 1153 patients, 60.62% achieved ypN0. The stacking model achieved excellent AUCs of 0.926, 0.874, and 0.862 in the training, external validation, and prospective cohort, respectively. It also showed lower false-negative rates (FNRs) compared to radiologists, with rates of 14.40%, 20.85%, and 18.18% (radiologists: 40.80%, 50.49%, and 63.64%) in three cohorts. Additionally, there was a significant difference in disease-free survival between high-risk and low-risk groups (p < 0.05). CONCLUSIONS: The stacking model can accurately predict ALN status after NAC in breast cancer, showing a lower false-negative rate than radiologists. TRIAL REGISTRATION NUMBER: The clinical trial numbers were NCT03154749 and NCT04858529.

7.
Ann Surg ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557792

RESUMEN

OBJECTIVE: To develop an artificial intelligence (AI) system for the early prediction of residual cancer burden (RCB) scores during neoadjuvant chemotherapy (NAC) in breast cancer. SUMMARY BACKGROUND DATA: RCB III indicates drug resistance in breast cancer, and early detection methods are lacking. METHODS: This study enrolled 1048 patients with breast cancer from four institutions, who were all receiving NAC. Magnetic resonance images were collected at the pre- and mid-NAC stages, and radiomics and deep learning features were extracted. A multitask AI system was developed to classify patients into three groups (RCB 0-I, II, and III ) in the primary cohort (PC, n=335). Feature selection was conducted using the Mann-Whitney U- test, Spearman analysis, least absolute shrinkage and selection operator regression, and the Boruta algorithm. Single-modality models were developed followed by model integration. The AI system was validated in three external validation cohorts. (EVCs, n=713). RESULTS: Among the patients, 442 (42.18%) were RCB 0-I, 462 (44.08%) were RCB II and 144 (13.74%) were RCB III. Model-I achieved an area under the curve (AUC) of 0.975 in the PC and 0.923 in the EVCs for differentiating RCB III from RCB 0-II. Model-II distinguished RCB 0-I from RCB II-III, with an AUC of 0.976 in the PC and 0.910 in the EVCs. Subgroup analysis confirmed that the AI system was consistent across different clinical T stages and molecular subtypes. CONCLUSIONS: The multitask AI system offers a noninvasive tool for the early prediction of RCB scores in breast cancer, supporting clinical decision-making during NAC.

8.
Small ; : e2312006, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38431945

RESUMEN

A high soluble and stable ɛ-Zn(OH)2 precursor is synthesized at below room temperature to efficiently prepare ZnO whiskers. The experimental results indicate that the formation of ZnO whiskers is carried out mainly via two steps: the formation of ZnO seeds from ɛ-Zn(OH)2 via the in situ solid conversion, and the following growth of whiskers via dissolution-precipitation route. The decrease of temperature from 25 to 5 °C promotes the formation of ɛ-Zn(OH)2 with higher solubility and stability, which balances the conversion and dissolution rates of precursor. The Rietveld refinement, DFT calculations and MD simulations reveal that the primary reason for these characteristics is the expansion of ɛ-Zn(OH)2 lattice due to temperature, causing difficulties in the dehydration of adjacent ─OH. Simultaneously, the larger specific surface area favors the dissolution of ɛ-Zn(OH)2 . Based on this precursor, well-dispersed ZnO whiskers with 9.82 µm in length, 242.38 nm in diameter, and an average aspect ratio of 41 are successfully synthesized through a SDSN-assisted hydrothermal process at 80 °C. The process has an extremely high solid content of 2.5% (mass ratio of ZnO to solution) and an overall yield of 92%, which offers a new approach for the scaled synthesis of high aspect ratio ZnO whiskers by liquid-phase method.

9.
Am Heart J ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942221

RESUMEN

BACKGROUND: It is currently uncertain whether the combination of a proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor and high-intensity statin treatment can effectively reduce cardiovascular events in patients with acute coronary syndrome (ACS) who have undergone percutaneous coronary intervention (PCI) for culprit lesions. METHODS: This study protocol describes a double-blind, randomized, placebo-controlled, multicenter study aiming to investigate the efficacy and safety of combining a PCSK9 inhibitor with high-intensity statin therapy in patients with ACS following PCI. A total of 1212 patients with ACS and multiple lesions will be enrolled and randomly assigned to receive either PCSK9 inhibitor plus high-intensity statin therapy or high-intensity statin monotherapy. The randomization process will be stratified by sites, diabetes, initial presentation and use of stable (≥4 weeks) statin treatment at presentation. PCSK 9 inhibitor or its placebo is injected within 4 hours after PCI for the culprit lesion. The primary endpoint is the composite of cardiovascular death, myocardial infarction, stroke, re-hospitalization due to ACS or heart failure, or any ischemia-driven coronary revascularization at one-year follow-up between two groups. Safety endpoints mean PCSK 9 inhibitor and statin intolerance. CONCLUSION: The SHAWN study has been specifically designed to evaluate the effectiveness and safety of adding a PCSK9 inhibitor to high-intensity statin therapy in patients who have experienced ACS following PCI. The primary objective of this study is to generate new evidence regarding the potential benefits of combining a PCSK9 inhibitor with high-intensity statin treatment in reducing cardiovascular events among these patients.

10.
New Phytol ; 242(1): 302-316, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38214455

RESUMEN

Evolutionary transitions from outcrossing to selfing in flowering plants have convergent morphological and genomic signatures and can involve parallel evolution within related lineages. Adaptive evolution of morphological traits is often assumed to evolve faster than nonadaptive features of the genomic selfing syndrome. We investigated phenotypic and genomic changes associated with transitions from distyly to homostyly in the Primula oreodoxa complex. We determined whether the transition to selfing occurred more than once and investigated stages in the evolution of morphological and genomic selfing syndromes using 22 floral traits and both nuclear and plastid genomic data from 25 populations. Two independent transitions were detected representing an earlier and a more recently derived selfing lineage. The older lineage exhibited classic features of the morphological and genomic selfing syndrome. Although features of both selfing syndromes were less developed in the younger selfing lineage, they exhibited parallel development with the older selfing lineage. This finding contrasts with the prediction that some genomic changes should lag behind adaptive changes to morphological traits. Our findings highlight the value of comparative studies on the timing and extent of transitions from outcrossing to selfing between related lineages for investigating the tempo of morphological and molecular evolution.


Asunto(s)
Flores , Primula , Flores/genética , Flores/anatomía & histología , Genómica , Primula/genética , Evolución Biológica , Reproducción/genética , Polinización , Autofecundación/genética
11.
Plant Cell Environ ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38679901

RESUMEN

Plant JASMONATE ZIM-DOMAIN (JAZ) genes play crucial roles in regulating the biosynthesis of specialized metabolites and stressful responses. However, understanding of JAZs controlling these biological processes lags due to numerous JAZ copies. Here, we found that two leaf-specific CwJAZ4/9 genes from Curcuma wenyujin are strongly induced by methyl-jasmonate (MeJA) and negatively correlated with terpenoid biosynthesis. Yeast two-hybrid, luciferase complementation imaging and in vitro pull-down assays confirmed that CwJAZ4/9 proteins interact with CwMYC2 to form the CwJAZ4/9-CwMYC2 regulatory cascade. Furthermore, transgenic hairy roots showed that CwJAZ4/9 acts as repressors of MeJA-induced terpenoid biosynthesis by inhibiting the terpenoid pathway and jasmonate response, thus reducing terpenoid accumulation. In addition, we revealed that CwJAZ4/9 decreases salt sensitivity and sustains the growth of hairy roots under salt stress by suppressing the salt-mediated jasmonate responses. Transcriptome analysis for MeJA-mediated transgenic hairy root lines further confirmed that CwJAZ4/9 negatively regulates the terpenoid pathway genes and massively alters the expression of genes related to salt stress signaling and responses, and crosstalks of multiple phytohormones. Altogether, our results establish a genetic framework to understand how CwJAZ4/9 inhibits terpenoid biosynthesis and confers salt tolerance, which provides a potential strategy for producing high-value pharmaceutical terpenoids and improving resistant C. wenyujin varieties by a genetic approach.

12.
Microb Pathog ; 191: 106673, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705218

RESUMEN

The Seneca Valley virus (SVV) is a recently discovered porcine pathogen that causes vesicular diseases and poses a significant threat to the pig industry worldwide. Erythropoietin-producing hepatoma receptor A2 (EphA2) is involved in the activation of the AKT/mTOR signaling pathway, which is involved in autophagy. However, the regulatory relationship between SVV and EphA2 remains unclear. In this study, we demonstrated that EphA2 is proteolysed in SVV-infected BHK-21 and PK-15 cells. Overexpression of EphA2 significantly inhibited SVV replication, as evidenced by decreased viral protein expression, viral titers, and viral load, suggesting an antiviral function of EphA2. Subsequently, viral proteins involved in the proteolysis of EphA2 were screened, and the SVV 3C protease (3Cpro) was found to be responsible for this cleavage, depending on its protease activity. However, the protease activity sites of 3Cpro did not affect the interactions between 3Cpro and EphA2. We further determined that EphA2 overexpression inhibited autophagy by activating the mTOR pathway and suppressing SVV replication. Taken together, these results indicate that SVV 3Cpro targets EphA2 for cleavage to impair its EphA2-mediated antiviral activity and emphasize the potential of the molecular interactions involved in developing antiviral strategies against SVV infection.


Asunto(s)
Proteasas Virales 3C , Autofagia , Picornaviridae , Receptor EphA2 , Transducción de Señal , Serina-Treonina Quinasas TOR , Proteínas Virales , Replicación Viral , Animales , Receptor EphA2/metabolismo , Receptor EphA2/genética , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular , Porcinos , Picornaviridae/fisiología , Picornaviridae/genética , Proteasas Virales 3C/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/genética , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Proteolisis , Cricetinae , Interacciones Huésped-Patógeno , Carga Viral
13.
Arch Biochem Biophys ; 753: 109904, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253247

RESUMEN

Excessive angiogenesis in subchondral bone is a pathological feature of osteoarthritis (OA). Tanshinone IIA (TIIA), an active compound found in Salvia miltiorrhiza, demonstrates significant anti-angiogenic properties. However, the effect of TIIA on abnormal subchondral angiogenesis in OA is still unclear. This study aims to investigate the mechanism of TIIA in modulating subchondral bone angiogenesis during OA and assess its therapeutic potential in OA. Our findings demonstrate that TIIA attenuated articular cartilage degeneration, normalized subchondral bone remodeling, and effectively suppressed aberrant angiogenesis within subchondral bone in monosodium iodoacetate (MIA)-induced OA mice. Additionally, the angiogenesis capacity of primary CD31hiEmcnhi endothelial cells was observed to be significantly reduced after treatment with TIIA in vitro. Mechanically, TIIA diminished the proportion of hypertrophic chondrocytes, ultimately leading to a substantial reduction in the secretion of vascular endothelial growth factor A (VEGFA). The supernatant of hypertrophic chondrocytes promoted the tube formation of CD31hiEMCNhi endothelial cells, whereas TIIA inhibited this process. Furthermore, TIIA effectively suppressed the expression of vascular endothelial growth factor receptor 2 (VEGFR2) along with its downstream MAPK pathway in CD31hiEmcnhi endothelial cells. In conclusion, our data indicated that TIIA could effectively inhibit the abnormal angiogenesis in subchondral bone during the progression of OA by suppressing the VEGFA/VEFGR2/MAPK pathway. These findings significantly contribute to our understanding of the abnormal angiogenesis in OA and offer a promising therapeutic target for OA treatment.


Asunto(s)
Abietanos , Cartílago Articular , Osteoartritis , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular , Células Endoteliales/metabolismo , Angiogénesis , Osteoartritis/metabolismo
14.
BMC Cancer ; 24(1): 353, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504158

RESUMEN

NUP155 is reported to be correlated with tumor development. However, the role of NUP155 in tumor physiology and the tumor immune microenvironment (TIME) has not been previously examined. This study comprehensively investigated the expression, immunological function, and prognostic significance of NUP155 in different cancer types. Bioinformatics analysis revealed that NUP155 was upregulated in 26 types of cancer. Additionally, NUP155 upregulation was strongly correlated with advanced pathological or clinical stages and poor prognosis in several cancers. Furthermore, NUP155 was significantly and positively correlated with DNA methylation, tumor mutational burden, microsatellite instability, and stemness score in most cancers. Additionally, NUP155 was also found to be involved in TIME and closely associated with tumor infiltrating immune cells and immunoregulation-related genes. Functional enrichment analysis revealed a strong correlation between NUP155 and immunomodulatory pathways, especially antigen processing and presentation. The role of NUP155 in breast cancer has not been examined. This study, for the first time, demonstrated that NUP155 was upregulated in breast invasive carcinoma (BRCA) cells and revealed its oncogenic role in BRCA using molecular biology experiments. Thus, our study highlights the potential value of NUP155 as a biomarker in the assessment of prognostic prediction, tumor microenvironment and immunotherapeutic response in pan-cancer.


Asunto(s)
Neoplasias de la Mama , Carcinoma , Humanos , Femenino , Neoplasias de la Mama/genética , Apoptosis , Mama , Proliferación Celular/genética , Pronóstico , Microambiente Tumoral/genética , Proteínas de Complejo Poro Nuclear/genética
15.
Calcif Tissue Int ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833001

RESUMEN

Primary failure of eruption (PFE) is a rare disorder that is characterized by the inability of a molar tooth/teeth to erupt to the occlusal plane or to normally react to orthodontic force. This condition is related to hereditary factors and has been extensively researched over many years. However, the etiological mechanisms of pathogenesis are still not fully understood. Evidence from studies on PFE cases has shown that PFE patients may carry parathyroid hormone 1 receptor (PTH1R) gene mutations, and genetic detection can be used to diagnose PFE at an early stage. PTH1R variants can lead to altered protein structure, impaired protein function, and abnormal biological activities of the cells, which may ultimately impact the behavior of teeth, as observed in PFE. Dental follicle cells play a critical role in tooth eruption and root development and are regulated by parathyroid hormone-related peptide (PTHrP)-PTH1R signaling in their differentiation and other activities. PTHrP-PTH1R signaling also regulates the activity of osteoblasts, osteoclasts and odontoclasts during tooth development and eruption. When interference occurs in the PTHrP-PTH1R signaling pathway, the normal function of dental follicles and bone remodeling are impaired. This review provides an overview of PTH1R variants and their correlation with PFE, and highlights that a disruption of PTHrP-PTH1R signaling impairs the normal process of tooth development and eruption, thus providing insight into the underlying mechanisms related to PTH1R and its role in driving PFE.

16.
Cerebellum ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869769

RESUMEN

The CACNA1A gene encodes the alpha-1A subunit of P/Q type voltage-gated calcium channel Cav2.1, which is associated with a broad clinical spectrum and variable symptomatology. While few patients with progressive ataxia caused by CACNA1A missense variants have been reported, here we report three unrelated Chinese patients with progressive ataxia due to de novo missense variants in the CACNA1A gene, including a novel pathogenic variant (c.4999C > G) and a previously reported pathogenic variant (c.4037G > A). Our findings and a systematic literature review show the unique phenotype of progressive ataxia caused by missense variants and enlarge the genetic and clinical spectrum of CACNA1A. This suggests that in addition to routine screening for dynamic mutations, screening for CACNA1A variants is important for clinicians facing patients with progressive ataxia.

17.
Am J Med Genet A ; 194(1): 46-52, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37608778

RESUMEN

We report compound heterozygous variants in TOE1 in siblings of Chinese origin who presented with dyskinesia and intellectual disabilities. Our report provides further information regarding the etiology and pathogenesis of pontocerebellar hypoplasia type 7 syndrome (PCH7). Clinical manifestations were obtained, and genomic DNA was collected from family members. Whole-exome and Sanger sequencing were performed to identify associated genetic variants. Bioinformatics analysis was conducted to identify and characterize the pathogenicity of the heterozygous variants. Following long-term rehabilitation, both siblings showed minimal improvement, and their condition tended to progress. Whole-exome sequencing revealed two unreported heterozygous variants, NM_025077: c.C553T (p.R185W) and NM_025077: c.G562T (p.V188L), in the TOE1 gene mapped to 1p34.1. Sanger sequencing confirmed that the two variants in the proband and her brother were inherited from their parents. The NM_025077: c.C553T (p.R185W) variant was inherited from the father, and the NM_025077: c.G562T (p.V188L) variant was inherited from the mother. Although the two variants in the TOE1 gene have not been reported previously, they were associated with PCH7 based on integrated analysis. Thus, our report contributes to our knowledge regarding the etiology and phenotype of PCH 7.


Asunto(s)
Enfermedades Cerebelosas , Discapacidad Intelectual , Humanos , Masculino , Femenino , Mutación , Discapacidad Intelectual/genética , China , Linaje , Proteínas Nucleares/genética
18.
Langmuir ; 40(16): 8533-8541, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38606693

RESUMEN

Indium sulfide with a two-dimensional layered structure offers a platform for catalyzing water oxidation by a photoelectrochemical process. However, the limited hole holders hinder the weak intrinsic catalytic activity. Here, the nonmetallic phosphorus atom is coordinated to In2.77S4/In(OH)3 through a bridge-bonded sulfur atom. By substituting the S position by the P dopant, the work function (surface potential) is regulated from 445 to 210 mV, and the lower surface potential is shown to be beneficial for holding the photogenerated holes. In2.77S4/In(OH)3/P introduces a built-in electric field under the difference of Fermi energy, and the direction is from the bulk to the surface. This band structure results in upward band bending at the interface of In2.77S4/In(OH)3 and P-doped sites, which is identified by density functional theory calculations (∼0.8 eV work function difference). In2.77S4/In(OH)3/P stands out with the highest oxidation efficiency (ηoxi = 70%) and charge separation efficiency (ηsep = 69%). Importantly, it delivers a remarkable water oxidation photocurrent density of 2.51 mA cm-2 under one sun of illumination.

19.
J Pineal Res ; 76(5): e12987, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38975671

RESUMEN

Sleep deprivation (SD) has been associated with a plethora of severe pathophysiological syndromes, including gut damage, which recently has been elucidated as an outcome of the accumulation of reactive oxygen species (ROS). However, the spatiotemporal analysis conducted in this study has intriguingly shown that specific events cause harmful damage to the gut, particularly to goblet cells, before the accumulation of lethal ROS. Transcriptomic and metabolomic analyses have identified significant enrichment of metabolites related to ferroptosis in mice suffering from SD. Further analysis revealed that melatonin could rescue the ferroptotic damage in mice by suppressing lipid peroxidation associated with ALOX15 signaling. ALOX15 knockout protected the mice from the serious damage caused by SD-associated ferroptosis. These findings suggest that melatonin and ferroptosis could be targets to prevent devastating gut damage in animals exposed to SD. To sum up, this study is the first report that proposes a noncanonical modulation in SD-induced gut damage via ferroptosis with a clearly elucidated mechanism and highlights the active role of melatonin as a potential target to maximally sustain the state during SD.


Asunto(s)
Ferroptosis , Melatonina , Ratones Noqueados , Privación de Sueño , Animales , Ratones , Melatonina/metabolismo , Melatonina/farmacología , Privación de Sueño/metabolismo , Masculino , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Peroxidación de Lípido , Araquidonato 15-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/genética , Araquidonato 12-Lipooxigenasa
20.
Physiol Plant ; 176(2): e14280, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38644527

RESUMEN

Inadequate reference databases in RNA-seq analysis can hinder data utilization and interpretation. In this study, we have successfully constructed a high-quality reference transcript dataset, ZjRTD1.0, for Zoysia japonica, a widely-used turfgrass with exceptional tolerance to various abiotic stress, including low temperatures and salinity. This dataset comprises 113,089 transcripts from 57,143 genes. BUSCO analysis demonstrates exceptional completeness (92.4%) in ZjRTD1.0, with reduced proportions of fragmented (3.3%) and missing (4.3%) orthologs compared to prior datasets. ZjRTD1.0 enables more precise analyses, including transcript quantification and alternative splicing assessments using public datasets, which identified a substantial number of differentially expressed transcripts (DETs) and differential alternative splicing (DAS) events, leading to several novel findings on Z. japonica's responses to abiotic stresses. First, spliceosome gene expression influenced alternative splicing significantly under abiotic stress, with a greater impact observed during low-temperature stress. Then, a significant positive correlation was found between the number of differentially expressed genes (DEGs) encoding protein kinases and the frequency of DAS events, suggesting the role of protein phosphorylation in regulating alternative splicing. Additionally, our results suggest possible involvement of serine/arginine-rich (SR) proteins and heterogeneous nuclear ribonucleoproteins (hnRNPs) in generating inclusion/exclusion isoforms under low-temperature stress. Furthermore, our investigation revealed a significantly enhanced overlap between DEGs and differentially alternatively spliced genes (DASGs) in response to low-temperature stress, suggesting a unique co-regulatory mechanism governing transcription and splicing in the context of low-temperature response. In conclusion, we have proven that ZjRTD1.0 will serve as a reliable and useful resource for future transcriptomic analyses in Z. japonica.


Asunto(s)
Empalme Alternativo , Frío , Poaceae , Empalme Alternativo/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/genética , Estrés Fisiológico/genética , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA