Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Nano Lett ; 24(20): 5993-6001, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38655913

RESUMEN

Bimetallic hollow structures have attracted much attention due to their unique properties, but they still face the problems of nonuniform alloys and excessive etching leading to structural collapse. Here, uniform bimetallic hollow nanospheres are constructed by pore engineering and then highly loaded with hemin (Hemin@MOF). Interestingly, in the presence of polydopamine (PDA), the competitive coordination between anionic polymer (γ-PGA) and dimethylimidazole does not lead to the collapse of the external framework but self-assembly into a hollow structure. By constructing the Hemin@MOF immune platform and using E. coli O157:H7 as the detection object, we find that the visual detection limits can reach 10, 3, and 3 CFU/mL in colorimetric, photothermal, and catalytic modes, which is 4 orders of magnitude lower than the traditional gold standard. This study provides a new idea for the morphological modification of the metal-organic skeleton and multifunctional immunochromatography detection.


Asunto(s)
Hemina , Indoles , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Hemina/química , Indoles/química , Polímeros/química , Escherichia coli O157 , Estructuras Metalorgánicas/química , Nanosferas/química , Límite de Detección
2.
Anal Chem ; 96(12): 4825-4834, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38364099

RESUMEN

Immunochromatographic assays (ICAs) have been widely used in the field detection of mycotoxin contaminants. Nevertheless, the lack of multisignal readout capability and the ability of signaling tags to maintain their biological activity while efficiently loading antibodies remain a great challenge in satisfying diverse testing demands. Herein, we proposed a novel three-in-one multifunctional hollow vanadium nanomicrosphere (high brightness-catalytic-photothermal properties)-mediated triple-readout ICA (VHMS-ICA) for sensitive detection of T-2. As the key to this biosensing strategy, vanadium was used as the catalytic-photothermal characterization center, and natural polyphenols were utilized as the bridging ligands for coupling with the antibody while self-assembling with formaldehyde cross-linking into a hollow nanocage-like structure, which offers the possibility of realizing a three-signal readout strategy and improving the coupling efficiency to the antibody while preserving its biological activity. The constructed sensors showed a detection limit (LOD) of 2 pg/mL for T-2, which was about 345-fold higher than that of conventional gold nanoparticle-based ICA (0.596 ng/mL). As anticipated, the detection range of VHMS-ICA was extended about 8-fold compared with the colorimetric signal alone. Ultimately, the proposed immunosensor performed well in maize and oat samples, with satisfactory recoveries. Owing to the synergistic and complementary interactions between distinct signaling modes, the establishment of multimodal immunosensors with multifunctional tags is an efficient strategy to satisfy diversified detection demands.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanopartículas del Metal/química , Inmunoensayo , Colorimetría , Oro/química , Vanadio , Anticuerpos , Límite de Detección
3.
Anal Chem ; 96(3): 1232-1240, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38164711

RESUMEN

The emergence of nanoenzymes has catalyzed the robust advancement of the lateral flow immunoassay (LFIA) in recent years. Among them, multifunctional nanocomposite enzymes with core-shell architectures are considered preferable for promoting the sensing ability due to their good biocompatibility, precise control over size, and surface properties etc. Herein, we developed a dual-channel ensured lateral flow immunoassay (DFLIA) platform utilizing a magnetic, colorimetric, and catalytic multifunctional nanocomposite enzyme (Fe3O4@TCPP@Pd) [TCPP, Tetrakis (4-carboxyphenyl) porphyrin] for the ultrasensitive and highly accurate rapid detection of Escherichia coli O157:H7 (E. coli O157:H7). Fe3O4@TCPP@Pd-mAb exhibits superior performance compared to traditional AuNPs, including enhanced sensitivity and an extended linear detection range, benefiting from its high brightness signal, strong magnetic separation ability, and high peroxidase activity (Vmax = 2.32 µM S1-). Moreover, the Fe3O4@TCPP@Pd-labeled mAb probe exhibited exceptional stability and high affinity toward E. coli O157:H7 (with an affinity constant of approximately 1.723 × 109 M-1), indicating its potential for the efficient capture of the pathogen. Impressively, the developed Fe3O4@TCPP@Pd-DFLIA achieved ultrasensitive detection for E. coli O157:H7 with pre- and postcatalytic naked-eye detection sensitivities of 255 cfu/mL and 77 cfu/mL, respectively, representing an approximately 41-fold improvement over the conventional AuNP-based LFIA and also possessed good specificity and reproducibility [relative standard deviation (RSD) < 10%]. Additionally, the established DFLIA exhibited satisfactory recoveries in detecting pork and milk samples, further validating the reliability of this platform for immunoassays and demonstrating its potential for utilization in bioassays and clinical diagnostics.


Asunto(s)
Escherichia coli O157 , Nanopartículas del Metal , Nanocompuestos , Animales , Leche , Reproducibilidad de los Resultados , Oro/química , Colorimetría , Nanopartículas del Metal/química , Inmunoensayo/métodos , Nanocompuestos/química , Fenómenos Magnéticos , Microbiología de Alimentos
4.
J Org Chem ; 89(3): 1633-1647, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38235569

RESUMEN

A metal-free and atom-economic route for the synthesis of naphtho[1,2-b]furan-3-ones has been realized via p-TsOH·H2O-catalyzed intramolecular tandem double cyclization of γ-hydroxy acetylenic ketones with alkynes in formic acid. The benzene-linked furanonyl-ynes are the key intermediates obtained by the scission/recombination of C-O double bonds. Further, the structural modifications of the representative product were implemented by reduction, demethylation, substitution, and [5 + 2]-cycloaddition.

5.
Yi Chuan ; 46(5): 408-420, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38763775

RESUMEN

Lesch-Nyhan syndrome (LNS) is a congenital defect disease that results in defective purine metabolism. It is caused by pathogenic variants of the HPRT gene. Its clinical symptoms mainly include high uric acid levels, gout, and kidney stones and damage. The mechanism of LNS has not been fully elucidated, and no cure exists. Animal models have always played an important role in exploring causative mechanisms and new therapies. This study combined CRISPR/Cas9 and microinjection to knock out the HPRT gene to create an LNS rabbit model. A sgRNA targeting exon 3 of HPRT gene was designed. Subsequently, Cas9 mRNA and sgRNA were injected into rabbit zygotes, and injected embryos were transferred to the uterus. The genotype and phenotype of rabbits were analyzed after birth. Four infant rabbits (named R1, R2, R3 and R4), which showed varying levels of gene modification, were born. The gene-editing efficiency was 100%. No wild-type sequences at the target HPRT gene were detected in R4 rabbit. Next, 6-thioguanine drug testing confirmed that HPRT enzymatic activity was deficient in R4 infant rabbit. HE staining revealed kidney abnormalities in all infant rabbits. Overall, an sgRNA capable of knocking out the HPRT gene in rabbits was successfully designed, and HPRT gene-modified rabbits were successfully constructed by using CRISPR/Cas9 technology and microinjection. This study provides a new nonrodent animal model for studying LNS syndrome.


Asunto(s)
Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Hipoxantina Fosforribosiltransferasa , Síndrome de Lesch-Nyhan , Animales , Conejos , Síndrome de Lesch-Nyhan/genética , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Femenino , Edición Génica , ARN Guía de Sistemas CRISPR-Cas/genética , Masculino , Fenotipo
6.
Anal Chem ; 95(42): 15531-15539, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37753722

RESUMEN

Improving the sensitivity of immunochromatographic assays (ICAs) lies in the signal strength and probe activity of the labeled tracers, and the color properties and structure of the labeled tracers are key factors affecting the biological activity. In this study, cerium vanadate (CeVO4) of different sizes and shapes (230, 1058, and 710 nm) was synthesized to investigate its impact on the performance of ICA for T-2 detection. The prepared CeVO4 possessed outstanding stability, a large specific surface area, superior biocompatibility, and high compatibility with T-2 mAb (affinity constant was 3.14 × 108 M-1). As labeling probes for competitive ICA, the results showed that 1058 nm of CeVO4 as labels exhibited the best detection performance, with a limit of detection (LOD) of 0.079 ng/mL, which was substantially 19-fold less than the average of gold nanoparticle ICA. Additionally, CeVO4-ICA was effectively used to detect T-2 toxin, and the recovery rate for spiking corn and oatmeal samples was determined to be 81.27-115.44% (relative standard deviation <9.16%). The above information demonstrates the efficiency and applicability of CeVO4-ICA as a technique for quick and thorough identification of T-2 toxin residues in food.

7.
Anal Chem ; 95(24): 9237-9243, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37232263

RESUMEN

Nanozymes have drawn much attention as an enzyme mimetic with low cost and stability in enhancing analytical performance. Herein, a peroxidase-mimicking nanozyme-improved enzyme-linked immunosorbent assay (ELISA) was developed employing the bimetallic PdRu nanozyme to replace the natural enzymes as a catalytic carrier for the sensing of Escherichia coli O157:H7 (E. coli O157:H7). The PdRu nanozyme displayed ultrahigh catalytic activity, possessing a catalytic rate that was 5-fold higher than horseradish peroxidase (HRP). In addition, PdRu exhibited great biological affinity with antibody (affinity constant was about 6.75 × 1012 M) and high stability. All those advantages ensure the successful establishment and the construction of a novel colorimetric biosensor for E. coli O157:H7 detection. PdRu-based ELISA not only achieved an ultrasensitive detection sensitivity (8.7 × 102 CFU/mL) by approximately 288-fold as compared to the traditional HRP-based ELISA and also possessed satisfactory specificity and reproducibility (relative standard deviation (RSD) < 10%). Furthermore, the feasibility of PdRu-ELISA was further evaluated by detecting E. coli O157:H7 in actual samples with satisfactory recoveries, indicating its potential for applications in bioassays and clinical diagnostics.


Asunto(s)
Escherichia coli O157 , Reproducibilidad de los Resultados , Ensayo de Inmunoadsorción Enzimática , Anticuerpos Antibacterianos , Peroxidasa de Rábano Silvestre
8.
Anal Chem ; 95(12): 5275-5284, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36898021

RESUMEN

Owing to its high throughput, simplicity, and rapidity, enzyme-linked immunosorbent assay (ELISA) has attracted much attention in the field of immunoassays. However, the traditional ELISA usually affords a single signal readout and the labeling ability of the enzyme used is poor, resulting in low accuracy and a limited detection range. Herein, a vanadium nanospheres (VNSs)-mediated competitive ratio nanozymes-linked immunosorbent assay (VNSs-RNLISA) was created for the sensitive detection of the T-2 toxin (T-2). As the key to the biosensor, the VNSs with superoxide dismutase-like and peroxidase-like dual-enzyme mimetic activities were synthesized by a one-step hydrothermal method, which oxidized 1,1-diphenyl-2-picryl-hydrazyl fading and catalyzed 3,3',5,5'-tetramethylbenzidine (TMB) color development. Therefore, T-2 could not only be qualitatively measured with the naked eye but also be quantitatively evaluated by monitoring the ratio of absorbance at 450 and 517 nm wavelengths. Moreover, the characterization of a VNSs-labeled antibody probe showed strong dual-enzymatic activity, excellent stability, and high affinity with T-2 [the affinity constant (ka) was approximately 1.36 × 108 M-1], which can significantly improve the detection sensitivity. The limit of detection of VNSs-RNLISA was 0.021 ng/mL, which was approximately 27-fold more sensitive than the single signal nanozymes-linked immunosorbent assay (0.561 ng/mL). Besides, the change in the ratio of absorbance (Δ450/Δ517) decreased linearly in a range of 0.22-13.17 ng/mL, outperforming the detection range of a single-mode nano-enzyme-linked immunosorbent assay using TMB by a factor of 1.6 times. Furthermore, the VNSs-RNLISA was successfully used to identify T-2 in maize and oat samples, with recoveries ranging from 84.216 to 125.371%. Overall, this tactic offered a promising platform for the quick detection of T-2 in food and might broaden the application range of the enzyme-linked immunosorbent assay.


Asunto(s)
Técnicas Biosensibles , Nanosferas , Toxina T-2 , Inmunoensayo/métodos , Vanadio , Inmunoadsorbentes , Límite de Detección
9.
Anal Chem ; 95(45): 16585-16592, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37774142

RESUMEN

Nanomaterials-based immunochromatographic assays (ICAs) are of great significance in point-of-care testing (POCT), yet it remains challenging to explore low background platforms and high chromogenic intensity probes to improve detection performance. Herein, we reported a low interference and high signal-to-noise ratio fluorescent ICA platform based on ultrabright persistent luminescent nanoparticles (PLNPs) Zn2GeO4: Mn, which could produce intense photoluminescence at 254 nm excitation to reduce background interference from ICA substrates and samples. The prepared immunosensor was successfully applied in T-2 toxin detection with a remarkable limit of detection of 0.025 ng/mL, which was 22-fold more sensitive compared with that of traditional gold nanoparticles. Ultimately, a portable 3D-printed detection device equipped with a smartphone analyzing application was fabricated for quantitative readout in POCT, achieving favorable recoveries in practical sample detection. This work provides a creative attempt for ultrabright PLNP-based low background ICA, and it also guarantees its feasibility in practical POCT.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanotubos , Oro , Nanopartículas del Metal/química , Inmunoensayo/métodos , Colorantes , Límite de Detección
10.
Cell Tissue Bank ; 24(1): 181-190, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35794499

RESUMEN

The process of generating type I/II collagen scaffolds is fraught with bubble formation, which can interfere with the three-dimensional structure of the scaffold. Herein, we applied low-temperature vacuum freeze-drying to remove mixed air bubbles under negative pressure. Type I and II rubber sponges were acid-solubilized via acid lysis and enzymolysis. Thereafter, vacuum negative pressure was applied to remove bubbles, and the cover glass press method was applied to shape the type I/II original scaffold. Vacuum negative pressure was applied for a second time to remove any residual bubbles. Subsequent application of carbamide/N-hydroxysuccinimide cross-linked the scaffold. The traditional method was used as the control group. The structure and number of residual bubbles and pore sizes of the two scaffolds were compared. Based on the relationship between the pressure and the number of residual bubbles, a curve was created, and the time of ice formation was calculated. The bubble content of the experimental group was significantly lower than that of the control group (P < 0.05). The pore diameter of the type I/II collagen scaffold was higher in the experimental group than in the control group. The time of icing effect of type I and II collagen solution was 136.54 ± 5.26 and 144.40 ± 6.45 s, respectively. The experimental scaffold had a more regular structure with actively proliferating chondrocytes that possessed adherent pseudopodia. The findings indicated that the vacuum negative pressure method did not affect the physical or chemical properties of collagen, and these scaffolds exhibited good biocompatibility with chondrocytes.


Asunto(s)
Colágeno , Andamios del Tejido , Andamios del Tejido/química , Succión , Colágeno/química , Colágeno Tipo I , Colágeno Tipo II , Ingeniería de Tejidos/métodos
11.
Environ Sci Technol ; 56(17): 12613-12624, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35960689

RESUMEN

In situ growth of nanostructures on substrates is a strategy for designing highly efficient catalytic materials. Herein, multimetallic CuCoNi oxide nanowires are synthesized in situ on a three-dimensional nickel foam (NF) substrate (CuCoNi-NF) by a hydrothermal method and applied to peroxydisulfate (PDS) activation as immobilized catalysts. The catalytic performance of CuCoNi-NF is evaluated through the degradation of organic pollutants such as bisphenol A (BPA) and practical wastewater. The results indicate that the NF not only plays an important role as the substrate support but also serves as an internal Ni source for material fabrication. CuCoNi-NF exhibits high activity and stability during PDS activation as it mediates electron transfer from BPA to PDS. CuCoNi-NF first donates electrons to PDS to arrive at an oxidized state and subsequently deprives electrons from BPA to return to the initial state. CuCoNi-NF maintains high catalytic activity in the pH range of 5.2-9.2, adapts to a high ionic strength up to 100 mM, and resists background HCO3- and humic acid. Meanwhile, 76.6% of the total organic carbon can be removed from packaging wastewater by CuCoNi-NF-catalyzed PDS activation. This immobilized catalyst shows promising potential in wastewater treatment, well addressing the separation and recovery of conventional powdered catalysts.


Asunto(s)
Nanocables , Óxidos , Catálisis , Electrones , Níquel , Oxidación-Reducción , Aguas Residuales
12.
Bioorg Chem ; 125: 105848, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35533582

RESUMEN

Proteolysis-targeting chimeras (PROTACs), bifunctional molecules consisting of a ligand of protein of interest (POI), an E3 ligase ligand and a linker, have been developed to hijack the ubiquitin-proteasome system (UPS) to induce different POIs degradation. Currently, the first oral PROTACs (ARV-110 and ARV-471) have shown encouraging efficacy in clinical trials of prostate and breast cancer treatment, which turns a new avenue for the development of PROTAC research. In this review, we focus on a detailed summary of the latest progress of PROTACs and elucidate the advantages of PROTACs technology. In addition, potential challenges and perspectives of PRTOACs are discussed.


Asunto(s)
Descubrimiento de Drogas , Proteolisis , Ubiquitina-Proteína Ligasas , Ligandos
13.
Angew Chem Int Ed Engl ; 61(20): e202200164, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35238122

RESUMEN

Herein, an Ir-catalyzed asymmetric allylic substitution reaction of methyl azaarenes is described. Azaarenes such as (benzo)thiazole, oxazole, benzoimidazole, pyridine, and (iso)quinoline are all tolerated. The corresponding chiral azaarene derivatives are obtained in good yields with high enantioselectivity (up to 96 % yield and 99 % ee). The utilization of the Knochel reagent TMPZnBr⋅LiBr warrants the in situ formation of benzylic nucleophiles without additional activating reagents. 1 H NMR studies suggested a two-fold function of the Knochel reagent in this reaction. The synthetic utility of this method has been showcased by a concise enantioselective synthesis of an allosteric protein kinase modulator.


Asunto(s)
Iridio , Catálisis , Iridio/química , Estereoisomerismo
14.
FASEB J ; 34(10): 13257-13271, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32860269

RESUMEN

Fetal growth restriction (FGR) is a severe perinatal complication that can increase risk for mental illness. To investigate the mechanism by which FGR mice develop mental illness in adulthood, we established the FGR mouse model and the FGR mice did not display obvious depression-like behaviors, but after environmental stress exposure, FGR mice were more likely to exhibit depression-like behaviors than control mice. Moreover, FGR mice had significantly fewer dopaminergic neurons in the ventral tegmental area but no difference in serotoninergic neurons in the dorsal raphe. RNA-seq analysis showed that the downregulated genes in the midbrain of FGR mice were associated with many mental diseases and were especially involved in the regulation of NMDA-selective glutamate receptor (NMDAR) activity. Furthermore, the NMDAR antagonist memantine can relieve the stress-induced depression-like behaviors of FGR mice. In summary, our findings provide a theoretical basis for future research and treatment of FGR-related depression.


Asunto(s)
Depresión/patología , Neuronas Dopaminérgicas/patología , Retardo del Crecimiento Fetal/patología , Estrés Psicológico/patología , Área Tegmental Ventral/metabolismo , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Neuronas Dopaminérgicas/metabolismo , Núcleo Dorsal del Rafe/metabolismo , Núcleo Dorsal del Rafe/patología , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Retardo del Crecimiento Fetal/metabolismo , Masculino , Memantina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Estrés Psicológico/metabolismo , Área Tegmental Ventral/embriología , Área Tegmental Ventral/patología
15.
Int J Med Sci ; 18(2): 419-431, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33390811

RESUMEN

Background: In recent years, LncRNA acts as a member of competing endogenous RNA (ceRNA), playing an important role in drug resistance of lung cancer. The aim of this study was to identify potential biomarkers about cisplatin resistant lung cancer cells using a comprehensive ceRNA network. Methods: GSE6410 (GPL-201) analyzed gene expression changes about cisplatin resistance in A549 NSCLC cells. GSE43249 (GPL-14613) included noncoding RNA expression profiling derived from the cisplatin resistant A549 lung cells. GEO2R, an online analysis tool, analyzed the differentially expressed mRNAs and miRNAs (DEmRNAs and DEmiRNAs). To explore the functional enrichment implication of differentially expressed mRNAs, we used the GO (Gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis. Through miRDB, Targetscan, Starbase and miRWalk, we found targeted miRNAs. The Kaplan-Meier curve method was used to show clinical survival analysis of targeted RNAs (P<0.05). The Starbase database predicted potential lncRNAs mediated targeted miRNAs. Eventually, the novel ceRNA network of lncRNAs, miRNAs, mRNA was constructed by cytoscape3.7.2. Results: 118 differentially expressed mRNAs were the basis of the mediated ceRNA network. DAVID and Kaplan-Meier picked out BAX, an apoptosis regulator. Venn diagram demonstrated 8 miRNAs commonly regulating BAX. Starbase predicted lncRNA XIST mediated miRNAs. Finally, lncRNA XIST may be a useful biomarker regulating cisplatin resistance in lung cancer cells and further, we explored the BAX may effect tumor-infiltrating immune cells. Conclusions: LncRNA XIST competitively bound to miRNA 520 in the regulation of cisplatin resistance by BAX, participating apoptosis in the p53 signaling pathway.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Cisplatino/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Proteína X Asociada a bcl-2/genética , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Cisplatino/uso terapéutico , Conjuntos de Datos como Asunto , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Pronóstico
16.
Drug Dev Ind Pharm ; 47(8): 1279-1289, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34605344

RESUMEN

PURPOSE: Through the method of network pharmacology, the active components and targets of Shenqi Wan (SQW) were excavated, the relationship with novel Coronavirus pneumonia (COVID-19) was discussed, and the possible mechanism of SQW in the treatment of COVID-19 was revealed from the aspects of multicomponents, multitargets, and multipathways. METHODS: Firstly, the active components of SQW were screened from traditional Chinese medicine systems pharmacology database and analysis platform and the 2020 edition of Chinese Pharmacopeia, and the related targets of the components were obtained. Then the disease targets related to COVID-19 were screened from GeneCards and Online Mendelian Inheritance in Man. Venny was used to map the relationship between component-target and disease-target, and String was used to analyze the interaction of common targets. The network was constructed and analyzed by Cytoscape, the function of Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) genes was enriched by Metascape, and the molecular docking was verified by CB-Dock. RESULTS: Finally, 45 active components of SQW were obtained, and 72 potential targets were related to COVID-19, angiotensin-converting enzyme 2 (ACE2), interleukin (IL)-6, nitric oxide synthase (NOS3) and, C-reactive protein (CRP),may be the key targets. GO enrichment of 1715 projects, such as lipopolysaccharide stress response, active oxygen metabolism, positive regulation of cell migration, and other GO enrichment. About 136 KEGG pathways, tumor necrosis factor signaling pathway, IL-17 signaling pathway, hypoxia-inducible factor 1-α signaling pathway were obtained. Molecular docking showed that kaempferol, quercetin, luteolin, astragaloside, calyx isoflavone glucoside, matrine, and other COVID-19-related targets such as ACE2, chymotrypsin-like protease (3CLpro), papain-like protease (PLpro), prostaglandin-endoperoxide synthase 2 (PTGS2) have good binding ability. CONCLUSION: According to the above results, it is suggested that SQW may play a role in the treatment of COVID-19 by directly or indirectly combining kaempferol, quercetin, and luteolin with ACE2, 3CLpro, PLpro, and PTGS2 to regulate multiple biological functions and signaling pathways.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Medicamentos Herbarios Chinos , Enzima Convertidora de Angiotensina 2 , Ciclooxigenasa 2 , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Luteolina , Medicina Tradicional China/métodos , Simulación del Acoplamiento Molecular , Farmacología en Red , Quercetina
17.
Int J Med Sci ; 17(16): 2427-2439, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33029085

RESUMEN

Background and aim: Competing endogenous RNA (ceRNA) is believed to play vital roles in tumorigenesis. The goal of this study was to screen prognostic biomarkers in lung adenocarcinoma (LUAD). Methods: Common differentially expressed genes (DEGs) were collected from Gene Expression Omnibus (GEO) databases and The Cancer Genome Atlas databases (TCGA) using GEO2R and "limma" package in R, respectively. Overlapping DEGs were conducted using enrichment of functions and protein-protein interaction (PPI) network to discover significant candidate genes. By using a comprehensive analysis, we constructed an mRNA mediated ceRNA network. Survival rates were used Kaplan-Meier analysis. Statistical analysis was used to further identify the prognosis of studied genes. Results: Integrated analysis of GSE32863 and TCGA databases, a total of 886 overlapping DEGs, including 279 up-regulated and 607 down-regulated genes were identified. Considering the highest term of candidate genes in PPI, we identified TPX2, which was enriched in cell division signaling pathway. Besides, 35 differentially expressed miRNAs (DEmiRNAs) were predicted to target TPX2 and only 7 DEmiRNAs were identified to be prognostic biomarkers in LUAD. Then, 30 differentially expressed lncRNAs (DElncRNAs) were predicted to bind these 7 DEmiRNAs. Finally, we found that 7 DElncRNAs were correlated with the overall survival (all p <0.05). Furthermore, we identified elevated TPX2 was strongly correlated with the worse survival rate among 458 samples. Univariate and multivariate cox analysis showed TPX2 may act as an independent factor for prognosis in LUAD (p <0.05). Then pathway enrichment results suggested that TPX2 may facilitate tumorigenesis by participating in several cancer-related signaling pathways in LUAD, especially in Notch signal pathway. Conclusions: TPX2-related lncRNAs and miRNAs are related to the survival of LUAD. 7 lncRNAs, 7 miRNAs and TPX2 may serve as prognostic biomarkers in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Biomarcadores de Tumor/genética , Proteínas de Ciclo Celular/genética , Redes Reguladoras de Genes , Neoplasias Pulmonares/genética , Proteínas Asociadas a Microtúbulos/genética , Adenocarcinoma del Pulmón/diagnóstico , Adenocarcinoma del Pulmón/mortalidad , Adenocarcinoma del Pulmón/patología , Anciano , Biomarcadores de Tumor/metabolismo , Carcinogénesis/genética , Proteínas de Ciclo Celular/metabolismo , Conjuntos de Datos como Asunto , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Pulmón/patología , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , MicroARNs/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Persona de Mediana Edad , Estadificación de Neoplasias , Análisis de Secuencia por Matrices de Oligonucleótidos , Pronóstico , Mapas de Interacción de Proteínas/genética , ARN Largo no Codificante/metabolismo , Tasa de Supervivencia , Regulación hacia Arriba
18.
Angew Chem Int Ed Engl ; 59(5): 2039-2043, 2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31693789

RESUMEN

The stereodivergent iridium-catalyzed allylic alkylation and fluorination of acyclic ketones is described. α-Pyridyl-α-fluoroketones with vicinal tertiary and quaternary stereocenters were obtained in moderate to excellent yields and stereoselectivities. Distinct from known stereodivergent synthesis, for which two different chiral catalysts are required in general, herein we report a sequence-dependent stereodivergent synthesis. With only a single chiral Ir catalyst, all four possible stereoisomers of the products were prepared from the same starting materials by simply adjusting the sequence of asymmetric allylic alkylation and fluorination and varying the absolute configuration of the Ir catalyst.

19.
Brain Behav Immun ; 79: 91-101, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31100367

RESUMEN

BACKGROUND: Ischemia-reperfusion (IR)-induced pain hypersensitivity shares features of neuroinflammation and neuropathic pain, accompanied by overproduction of interleukin (IL)-1ß. Multiple microRNAs (miRs) are dysregulated during IR; among these miRs, miR-187-3p was recently reported to drive IL-1ß release in retinal disease by activating members of the purinergic receptor family. However, the roles of miR-187-3p in the spinal cord are unclear. Thus, we investigated whether miR-187-3p is involved in the pathogenesis of IR-induced pain hypersensitivity by regulating the P2X7R signal and subsequent IL-1ß release. METHODS: A mouse model was established by 5-min occlusion of the aortic arch. Pain hypersensitivity was assessed by the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). MiR-187-3p, P2X7R, cleaved caspase-1 and mature IL-1ß expression levels were measured by RT-PCR and Western blotting. The in vivo roles of miR-187-3p, P2X7R and IL-1ß were explored by intrathecal treatment with synthetic miRs, selective agonists and antagonists in separate experiments. Double immunofluorescence staining was performed to delineate the cellular distribution of P2X7R and IL-1ß. RESULTS: IR-induced progressively decreased PWT and PWL values were closely related to decreases in miR-187-3p and increases in P2X7R expression levels over time. The functional miR-187-3p/P2X7R pair was preliminarily predicted by a bioinformatic database and confirmed in vivo by quantitative analysis, as mimic-187 greatly increased miR-187-3p but decreased P2X7R expression levels, whereas inhibitor-187 reversed these changes. In contrast, downregulating P2X7R by mimic-187 or A-438079 treatment comparably increased PWT and PWL values in IR-injured mice, while upregulating P2X7R by inhibitor-187 or BzATP treatment decreased PWT and PWL values in sham-operated mice. Moreover, P2X7R and IL-1ß immunoreactivities in each group were changed in the same patterns. This finding was further supported by results showing that downregulating IL-1ß by A-438079 and IL-1ß-neutralizing antibody similarly decreased P2X7R, cleaved caspase-1 and mature IL-1ß expression levels, whereas BzATP treatment increased these levels. Expectedly, mimic-187 treatment preserved PWT and PWL values, with decreased cleaved caspase-1 and mature IL-1ß expression levels, whereas inhibitor-187 reversed these effects. CONCLUSIONS: The spinal miR-187-3p/P2X7R pair functioned in a mouse IR model. Increasing miR-187-3p protected against pain hypersensitivity and mature IL-1ß overproduction, partially through inhibiting P2X7R activation.


Asunto(s)
Interleucina-1beta/metabolismo , MicroARNs/metabolismo , Dolor/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Daño por Reperfusión/metabolismo , Animales , Materiales Biomiméticos/farmacología , Caspasa 1/genética , Caspasa 1/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/administración & dosificación , MicroARNs/genética , Neuralgia/metabolismo , Dolor/etiología , Dolor/genética , Agonistas del Receptor Purinérgico P2X/farmacología , Antagonistas del Receptor Purinérgico P2X/farmacología , Piridinas/farmacología , Receptores Purinérgicos P2X7/genética , Daño por Reperfusión/genética , Daño por Reperfusión/fisiopatología , Médula Espinal/metabolismo , Tetrazoles/farmacología
20.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 50(6): 867-871, 2019 Dec.
Artículo en Zh | MEDLINE | ID: mdl-31880119

RESUMEN

OBJECTIVE: To explore the effect of smoking on the histological subtype and prognosis of patients with lung adenocarcinoma (LAC) in China. METHODS: According to the new International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society(IASLC/ATS/ERS)classification, 266 donors with primary LAC were reclassified. The correlation between clinicopathological factors including smoking status and the histological subtype was analyzed, and survival analysis was used to analyze the prognosis of primary LAC. RESULTS: There were four main histological subtypes including acinar predominant adenocarcinoma (APA) 30.1%, papillary predominant adenocarcinoma (PPA) 26.7%, solid predominant adenocarcinoma (SPA) 25.9%, and lepidic predominant adenocarcinoma (LPA) 11.7%.Smoking was associated with the histological subtype.The proportion of smokers was significantly higher than non-smokers in the SPA group, and the proportion of non-smokers was higher in other subtypes group. Cox regression model showed that the histological subtype and TNM stage were the independent predictors of prognostic in all patients.TNM stage was the predictor of postoperative survival in both smokers and non-smokers, and histological subtypes was the predictor only in smokers (ß=0.898, RR=2.455). Compared with the non-SPA group, the prognosis of the SPA group was significantly worse. CONCLUSION: Smoking is associated with SPA subtype, which affect the prognosis of primary LAC.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Fumar , China , Humanos , Estadificación de Neoplasias , Pronóstico , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA