Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 20(3): 2094-2099, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32092277

RESUMEN

Confining interacting particles in one-dimension (1D) changes the electronic behavior of the system fundamentally, which has been studied extensively in the past. Examples of 1D metallic systems include carbon nanotubes, quasi-1D organic conductors, metal chains, and domain boundary defects in monolayer thick transition-metal dichalcogenides such as MoSe2. Here single and bundles of Mo6Se6 nanowires were fabricated through annealing a MoSe2 monolayer grown by molecular-beam epitaxy on graphene. Conversion from two-dimensional (2D) MoSe2 film to 1D Mo6Se6 nanowire is reversible. Mo6Se6 nanowires form preferentially at the Se-terminated zigzag edges of MoSe2 and stitch to it via two distinct atomic configurations. The Mo6Se6 wire is metallic and its length is tunable, which represents one of few 1D systems that exhibit properties pertinent to quantum confined Tomonaga-Luttinger liquid, as evidenced by scanning tunneling microscopic and spectroscopic studies.

2.
ACS Nano ; 16(10): 17356-17364, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36200750

RESUMEN

A mechanistic understanding of interactions between atomically thin two-dimensional (2D) transition-metal dichalcogenides (TMDs) and their growth substrates is important for achieving the unidirectional alignment of nuclei and seamless stitching of 2D TMD domains and thus 2D wafers. In this work, we conduct a cross-sectional scanning transmission electron microscopy (STEM) study to investigate the atomic-scale nucleation and early stage growth behaviors of chemical vapor deposited monolayer (ML-) MoS2 and molecular beam epitaxy ML-MoSe2 on a Au(111) substrate. Statistical analysis reveals the majority of as-grown domains, i.e., ∼88% for MoS2 and 90% for MoSe2, nucleate on surface terraces, with the rest (i.e., ∼12% for MoS2 and 10% for MoSe2) on surface steps. Moreover, within the latter case, step-associated nucleation, ∼64% of them are terminated with a Mo-zigzag edge in connection with the Au surface steps, with the rest (∼36%) being S-zigzag edges. In conjunction with ab initio density functional theory calculations, the results confirm that van der Waals epitaxy, rather than the surface step guided epitaxy, plays deterministic roles for the realization of unidirectional ML-MoS2 (MoSe2) domains on a Au(111) substrate. In contrast, surface steps, particularly their step height, are mainly responsible for the integrity and thickness of MoS2/MoSe2 films. In detail, it is found that the lateral growth of monolayer thick MoS2/MoSe2 domains only proceeds across mono-Au-atom high surface steps (∼2.4 Å), but fail for higher ones (bi-Au atom step and higher) during the growth. Our cross-sectional STEM study also confirms the existence of considerable compressive residual strain that reaches ∼3.0% for ML-MoS2/MoSe2 domains on Au(111). The present study aims to understand the growth mechanism of 2D TMD wafers.

3.
ACS Nano ; 14(8): 10716-10722, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32806039

RESUMEN

A mirror twin-domain boundary (MTB) in monolayer MoSe2 represents a (quasi) one-dimensional metallic system. Its electronic properties, particularly the low-energy excitations in the so-called 4|4P-type MTB, have drawn considerable research attention. Reports of quantum well states, charge density waves, and the Tomonaga-Luttinger liquid (TLL) have all been made. Here, by controlling the lengths of the MTBs and employing different substrates, we reveal by low-temperature scanning tunneling microscopy/spectroscopy, Friedel oscillations and quantum confinement effects causing the charge density modulations along the defect. The results are inconsistent with charge density waves. Interestingly, for graphene-supported samples, TLL in the MTBs is suggested, whereas that grown on gold, an ordinary Fermi liquid, is indicated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA