Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Am Chem Soc ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935530

RESUMEN

High-entropy alloy nanoparticles (HEA-NPs) show exceptional properties and great potential as a new generation of functional materials, yet a universal and facile synthetic strategy in air toward nonoxidized and precisely controlled composition remains a huge challenge. Here we provide a laser scribing method to prepare single-phase solid solution HEA-NPs libraries in air with tunable composition at the atomic level, taking advantage of the laser-induced metastable thermodynamics and substrate-assisted confinement effect. The three-dimensional porous graphene substrate functions as a microreactor during the fast heating/cooling process, which is conductive to the generation of the pure alloy phase by effectively blocking the binding of oxygen and metals, but is also beneficial for realizing accurate composition control via microstructure confinement-endowed favorable vapor pressure. Furthermore, by combining an active learning approach based on an adaptive design strategy, we discover an optimal composition of quinary HEA-NP catalysts with an ultralow overpotential for Li-CO2 batteries. This method provides a simple, fast, and universal in-air route toward the controllable synthesis of HEA-NPs, potentially integrated with machine learning to accelerate the research on HEAs.

2.
Nano Lett ; 21(21): 9108-9114, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34669420

RESUMEN

Metallic glasses exhibit excellent properties such as ultrahigh strength and excellent wear and corrosion resistance, but there is limited understanding on the relationship between their atomic structure and mechanical properties as a function of their structural state. In this paper, we bridge the processing-structure-property gap by utilizing molecular dynamics simulation for a model binary metallic glass, namely Ni80P20. The structural statistics including the fraction of Voronoi index, the distribution of Voronoi volume, and medium-range ordering are calculated to explain the observed changes in mechanical behavior and strain localization upon relaxation and rejuvenation. Our findings demonstrate that the evolution of mechanical properties can be linked to the atomic structure change in terms of short- and medium-range ordering. With the help of structural statistics, the mechanical properties are determined based on simple Voronoi analysis.

3.
J Am Chem Soc ; 142(21): 9809-9817, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32311259

RESUMEN

Coordination-driven self-assembly has been extensively employed to construct a variety of discrete structures as a bottom-up strategy. However, mechanistic understanding regarding whether self-assembly is under kinetic or thermodynamic control is less explored. To date, such mechanistic investigation has been limited to distinct, assembled structures. It still remains a formidable challenge to study the kinetic and thermodynamic behavior of self-assembly systems with multiple assembled isomers due to the lack of characterization methods. Herein, we use a stepwise strategy which combined self-recognition and self-assembly processes to construct giant metallo-supramolecules with 8 positional isomers in solution. With the help of ultrahigh-vacuum, low-temperature scanning tunneling microscopy and scanning tunneling spectroscopy, we were able to unambiguously differentiate 14 isomers on the substrate which correspond to 8 isomers in solution. Through measurement of 162 structures, the experimental probability of each isomer was obtained and compared with the theoretical probability. Such a comparison along with density functional theory (DFT) calculation suggested that although both kinetic and thermodynamic control existed in this self-assembly, the increased experimental probabilities of isomers compared to theoretical probabilities should be attributed to thermodynamic control.


Asunto(s)
Complejos de Coordinación/química , Termodinámica , Complejos de Coordinación/síntesis química , Teoría Funcional de la Densidad , Cinética , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Microscopía de Túnel de Rastreo , Estructura Molecular
4.
Nanotechnology ; 31(4): 045303, 2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-31561243

RESUMEN

Nanoimprinting behaviors of copper substrates and double-walled carbon nanotubes with interwall sp 3 bonds are investigated using molecular dynamics simulations. A high-frequency mechanical vibration with various amplitudes is applied on the carbon nanotube (CNT) mold and copper substrate in different directions. Results show that exciting mechanical resonances both on the CNT and substrate drastically decrease the maximum imprint force and interfacial friction up to 50% under certain amplitudes. Meanwhile, it is demonstrated that defects occur in the {111} plane in the copper substrate during nanoimprinting. For different CNT array densities, a higher grafting density needs more imprint force to transfer patterns. The maximum imprint force for a large range of CNT array densities can be reduced by vibrational perturbations, while reduction rates depend on the CNT grafting density. This work sheds deep insights into the nanoimprint process at the atomic level, suggesting that vibration perturbation is an effective approach for improving the nanoimprinting accuracy and preventing the fracture of nanopatterns.

5.
J Chem Phys ; 153(7): 074701, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32828088

RESUMEN

Using a polymer-masking approach, we have developed metal-free 2D carbon electrocatalysts based on single-layer graphene with and without punched holes and/or N-doping. A combined experimental and theoretical study on the resultant 2D graphene electrodes revealed that a single-layer graphene sheet exhibited a significantly higher electrocatalytic activity at its edge than that over the surface of its basal plane. Furthermore, the electrocatalytic activity of a single-layer 2D graphene sheet was significantly enhanced by simply punching microholes through the graphene electrode due to the increased edge population for the hole-punched graphene electrode. In a good consistency with the experimental observations, our density function theory calculations confirmed that the introduction of holes into a graphene sheet generated additional positive charge along the edge of the punched holes and hence the creation of more highly active sites for the oxygen reduction reaction. The demonstrated concept for less graphene material to be more electrocatalytically active shed light on the rational design of low-cost, but efficient electrocatalysts from 2D graphene for various potential applications ranging from electrochemical sensing to energy conversion and storage.

6.
Angew Chem Int Ed Engl ; 59(20): 7928-7933, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32073710

RESUMEN

Although tremendous efforts have been devoted to understanding the origin of boosted charge storage on heteroatom-doped carbons, none of the present studies has shown a whole landscape. Herein, by both experimental evidence and theoretical simulation, it is demonstrated that heteroatom doping not only results in a broadened operating voltage, but also successfully promotes the specific capacitance in aqueous supercapacitors. In particular, the electrolyte cations adsorbed on heteroatom-doped carbon can effectively inhibit hydrogen evolution reaction, a key step of water decomposition during the charging process, which broadens the voltage window of aqueous electrolytes even beyond the thermodynamic limit of water (1.23 V). Furthermore, the reduced adsorption energy of heteroatom-doped carbon consequently leads to more stored cations on the heteroatom-doped carbon surface, thus yielding a boosted charge storage performance.

7.
Langmuir ; 35(38): 12389-12399, 2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31474111

RESUMEN

We demonstrate a novel nanotextured graphene micropad that can rapidly harvest water from air to generate microscale water droplets with the desired size in designated positions on demand by simply applying a negative electric bias of -1.5 to -15 V. More interestingly, the water droplets can be reversibly dried nonthermally with the pad at ambient temperature in humid air (∼85% RH) by applying a positive electric bias of +1.5 to +15 V. The harvesting and drying rates on the glass are 2.7 and 1.5 µm3/s under biases of -15 and +15 V, respectively, but no apparent harvesting or drying activities are observed without the bias. The energy consumption is minimal as there is no Joule current due to the insulative substrate. It is shown that substrate wettability and ions play an important role in enabling the fast water harvesting and nonthermal drying. Molecular modeling is developed to understand the harvesting and drying mechanisms at the atomic scale. The water harvesting/drying approach may be useful for many technological applications such as micro/nanolithography, 3D printing, MEMS, and biochemical and microfluid devices.

8.
Nanotechnology ; 30(8): 085405, 2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30523822

RESUMEN

Lithium-sulfur (Li-S) batteries hold great promise for the next-generation lithium-ion energy storage devices. A key issue in the Li-S batteries is, however, the dissolving and migrating of the soluble polysulfides during the charge and discharge processes and introducing anchoring materials (AM) in the batteries effectively prevent the problem and improve the cycling stability of the Li-S batteries. Herein, Pmma-XO (X = C, Si, Ge, Sn) monolayers are introduced as AM to confine the lithium polysulfides and their anchoring properties are studied with the density functional theory methods. Particularly, Pmma-SiO and GeO monolayers are studied for the first time, and our calculations show that these two materials are stable semiconductive monolayers with direct-band-gaps and moderate binding with lithium polysulfides Li2S n (n = 8, 6, 4, 2 and 1). The Pmma-SiO and GeO trap Li2S n species on their surfaces and keep them intact during the charge and discharge, and the adsorption of Li2S n species leads to the enhanced conductivity of Pmma-SiO and GeO monolayers. Our study suggests that the Pmma-SiO and GeO monolayers are the promising AM for highly efficient Li-S batteries.

9.
Phys Chem Chem Phys ; 21(41): 23094-23101, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31603158

RESUMEN

Proton exchange fuel cells (PEFCs) are one of the most popular and promising energy conversion devices because of their highly stable and efficient membranes in acidic media, but there is a lack of durable non-noble metal electrocatalysts suitable for acidic environments. Herein, we designed a new type of electrocatalysts consisting of transition metal halide molecules covered by graphene sheets, which is supported by experiments. To rapidly screen the best catalysts from numerous candidate materials, the electronic structures, reaction free energies and overpotentials of those graphene-covered halide catalysts were studied by the first-principles calculations to predict the catalytic activities for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). An intrinsic descriptor, the electrostatic force induced by the metallic ions, was found to well describe the catalytic activities and provide a better understanding of the local electrical field effects on catalytic activities. The spin-down d-band center was also introduced to describe catalytic activities of the catalysts. The results demonstrate that the graphene-covered CrBr2 shows the best bifunctional catalytic activities for fuel cells while graphene-covered CoF2 could well facilitate H2O2 production. These catalysts are better than the best commercial noble metal catalysts (e.g., Pt and RuO2) in terms of overpotentials and activities. This work provides a theoretical base for rationally designing durable electrocatalysts with excellent catalytic activities.

10.
Angew Chem Int Ed Engl ; 57(38): 12567-12572, 2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30051963

RESUMEN

Highly efficient electrocatalysts derived from metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) for oxygen reduction reaction (ORR) have been developed. However, the subsequent pyrolysis is often needed owing to their poor intrinsic electrical conductivity, leading to undesirable structure changes and destruction of the original fine structure. Now, hybrid electrocatalysts were formed by self-assembling pristine covalent organic polymer (COP) with reduced graphene oxide (rGO). The electrical conductivity of the hybridized COP/rGO materials is increased by more than seven orders of magnitude (from 3.06×10-9 to 2.56×10-1  S m-1 ) compared with pure COPs. The ORR activities of the hybrid are enhanced significantly by the synergetic effect between highly active COP and highly conductive rGO. This COP/rGO hybrid catalyst exhibited a remarkable positive half-wave (150 mV).

11.
Nanotechnology ; 27(18): 185402, 2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-27005703

RESUMEN

Tetracyanoethylene (TCNE), with its strong electron-accepting ability, was used to dope graphene as a metal-free electrocatalyst for the oxygen reduction reaction (ORR). The charge transfer process was observed from graphene to TCNE by x-ray photoelectron spectroscopy and Raman characterizations. Our density functional theory calculations found that the charge transfer behavior led to an enhancement of the electrocatalytic activity for the ORR.

12.
Phys Chem Chem Phys ; 17(26): 16733-43, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26033301

RESUMEN

Defects are common but important in graphene, which could significantly tailor the electronic structures and physical and chemical properties. In this study, the density functional theory (DFT) method was applied to study the electronic structure and catalytic properties of graphene clusters containing various point and line defects. The electron transfer processes in oxygen reduction reaction (ORR) on perfect and defective graphene clusters in fuel cells was simulated, and the free energy and reaction energy barrier of the elementary reactions were calculated to determine the reaction pathways. It was found that the graphene cluster with the point defect having pentagon rings at the zigzag edge, or line defects (grain boundaries) consisting of pentagon-pentagon-octagon or pentagon-heptagon chains also at the edges, shows the electrocatalytic capability for ORR. Four-electron and two-electron transfer processes could occur simultaneously on graphene clusters with certain types of defects. The energy barriers of the reactions are comparable to that of platinum(111). The catalytic active sites were determined on the defective graphene.

13.
Nano Lett ; 14(4): 1938-43, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24588278

RESUMEN

Substantial differences in charge storage mechanisms exist between dielectric capacitors (DCs) and electrochemical capacitors (ECs), resulting in orders of magnitude difference of stored charge density in them. However, if ionic diffusion, the major charge transport mechanism in ECs, is confined within nanoscale dimensions, the Helmholtz layers and diffusion layers will overlap, resulting in dismissible ionic diffusion. An interesting contradiction between appreciable energy density and unrecognizable ionic diffusion is observed in solid-state capacitors made from reduced graphene oxide films that challenge the fundamental charge storage mechanisms proposed in such devices. A new capacitive model is proposed, which combines the two distinct charge storage mechanisms of DCs and ECs, to explain the contradiction, of high storage capacity yet undetectable ionic diffusion, seen in graphene oxide based supercapacitors.

14.
Langmuir ; 30(37): 11103-9, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25162139

RESUMEN

The interactions between micrometer-sized particles and substrates in aqueous environment are fundamental to numerous natural phenomena and industrial processes. Here we report a dynamically induced enhancement in adhesion interactions between microparticles and substrates immerged in water, air, and hexane. The dynamic adhesion force was measured by pulling microsized spheres off various substrate (hydrophilic/hydrophobic) surfaces at different retracting velocities. It was observed that when the pull-off velocity varies from 0.02 to 1500 µm/s, there is 100-200% increase in adhesion force in water while it has a 100% increase in nitrogen and hexane. The dynamic adhesion enhancement reduces with increasing effective contact angle defined by the average cosine of wetting angles of the substrates and the particles, and approaches the values measured in dry nitrogen and hexane as the effective contact angle is larger than 90(o). A dynamic model was developed to predict the adhesion forces resulting from this dynamic effect, and the predictions correlate well with the experimental results. The stronger dynamic adhesion enhancement in water is mainly attributed to electrical double layers and the restructuring of water in the contact area between particles and substrates.


Asunto(s)
Óxido de Aluminio/química , Poliestirenos/química , Dióxido de Silicio/química , Termodinámica , Agua/química , Aire , Hexanos/química , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Propiedades de Superficie
15.
Adv Mater ; 36(13): e2310422, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38102494

RESUMEN

The acidic aqueous supercapacitors have been found to deliver appealing capacitive properties due to fast ion diffusion caused by the applied smallest size of hydrion. However, their practical applications are largely inhibited by the narrow electrochemical stability window of water (1.23 V). Herein, A nitrogen-enriched porous carbon materials (RNOPCs) is reported, consisting of varied nitrogen doping bonded on sp2 and sp3 carbon sites, which are capable of stimulating a wider potential window up to 1.4 V and thus resulting in a great enhancement of capacitive performance in aqueous acidic electrolytes. Together with the improved electrical conductivity and preferable hydrion diffusion, RNOPCs exhibit an ultrahigh volumetric capacitance (1084 F cm-3) in 0.5 M H2SO4. Besides, a fully packed RNOPCs-based symmetrical supercapacitor can deliver a high gravimetric and volumetric energy density of 31.8 Wh Kg-1 and 54.3 Wh L-1 respectively, approaching those of lead acid batteries (25-35 Wh Kg-1). The first-principles calculations reveal that the lone pair electrons of the doped nitrogen can be delocalized on its neighboring carbon atoms, improving charge uptakes and overpotentials. Such facile and scale-up production of carbon-based supercapacitors can bridge the gap of energy density between traditional supercapacitors and batteries in aqueous electrolytes.

16.
Nat Commun ; 15(1): 928, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296957

RESUMEN

Non-dissociative chemisorption solid-state storage of hydrogen molecules in host materials is promising to achieve both high hydrogen capacity and uptake rate, but there is the lack of non-dissociative hydrogen storage theories that can guide the rational design of the materials. Herein, we establish generalized design principle to design such materials via the first-principles calculations, theoretical analysis and focused experimental verifications of a series of heteroatom-doped-graphene-supported Ca single-atom carbon nanomaterials as efficient non-dissociative solid-state hydrogen storage materials. An intrinsic descriptor has been proposed to correlate the inherent properties of dopants with the hydrogen storage capability of the carbon-based host materials. The generalized design principle and the intrinsic descriptor have the predictive ability to screen out the best dual-doped-graphene-supported Ca single-atom hydrogen storage materials. The dual-doped materials have much higher hydrogen storage capability than the sole-doped ones, and exceed the current best carbon-based hydrogen storage materials.

17.
Langmuir ; 29(45): 13743-9, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24117392

RESUMEN

We report a dynamically induced enhancement in interfacial adhesion between microsized particles and substrates under dry and humid conditions. The adhesion force of soft (polystyrene) and hard (SiO2 and Al2O3) microparticles on soft (polystyrene) and hard (fused silica and sapphire) substrates was measured by using an atomic force microscope with retraction (z-piezo) speed ranging over 4 orders of magnitude. The adhesion is strongly enhanced by the dynamic effect. When the retraction speed varies from 0.02 to 156 µm/s, the adhesion force increases by 10% to 50% in dry nitrogen while it increases by 15% to 70% in humid air. Among the material systems tested, the soft-soft contact systems exhibit the smallest dynamic effect while the hard-hard contacts show the largest enhancement. A dynamic model was developed to predict this dynamic effect, which agrees well with the experimental results. The influence of dynamic factors related to the adhesion enhancement, such as particle inertia, viscoelastic deformations, and crack propagation, was discussed to understand the dynamic enhancement mechanisms.

18.
Nat Commun ; 14(1): 5822, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726271

RESUMEN

Electrosynthesis of hydrogen peroxide via selective two-electron transfer oxygen reduction or water oxidation reactions offers a cleaner, cost-effective alternative to anthraquinone processes. However, it remains a challenge to achieve high Faradaic efficiencies at elevated current densities. Herein, we report that oxygen-deficient Pr1.0Sr1.0Fe0.75Zn0.25O4-δ perovskite oxides rich of oxygen vacancies can favorably bind the reaction intermediates to facilitate selective and efficient two-electron transfer pathways. These oxides exhibited superior Faradic efficiencies (~99%) for oxygen reduction over a wide potential range (0.05 to 0.45 V versus reversible hydrogen electrode) and current densities surpassing 50 mA cm-2 under high ionic strengths. We further found that the oxides perform a high selectivity (~80%) for two-electron transfer water oxidation reaction at a low overpotential (0.39 V). Lastly, we devised a membrane-free electrolyser employing bifunctional electrocatalysts, achieving a record-high Faradaic efficiency of 163.0% at 2.10 V and 50 mA cm-2. This marks the first report of the concurrent oxygen reduction and water oxidation catalysed by efficient bifunctional oxides in a novel membrane-free electrolyser for scalable hydrogen peroxide electrosynthesis.

19.
Adv Mater ; 35(33): e2302325, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37166138

RESUMEN

To date, the effect of noble metal (NM) electronic structures on CO2 reaction activity remains unknown, and explicit screening criteria are still lacking for designing highly efficient catalysts in CO2 -breathing batteries. Herein, by preferentially considering the decomposition of key intermediate Li2 CO3 , an intrinsic descriptor constituted of the d x 2 - y 2 ${{\rm{d}}}_{{x}^2 - {y}^2}$ orbital states and the electronegativity for predicting high-performance cathode material are discovered. As a demonstration, a series of graphene-supported noble metals (NM@G) as cathodes are fabricated via a fast laser scribing technique. Consistent with the preliminary prediction, Pd@G exhibits an ultralow overpotential (0.41 V), along with superior cycling performance up to 1400 h. Moreover, the overall thermodynamic reaction pathways on NM@G confirm the reliability of the established intrinsic descriptor. This basic finding of the relationship between the electronic properties of noble metal cathodes and the performance of Li-CO2 batteries provides a novel avenue for designing remarkably efficient cathode materials for metal-CO2 batteries.

20.
Small ; 8(16): 2464-8, 2012 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-22641471

RESUMEN

Gecko feet integrate many intriguing functions such as strong adhesion, easy detachment, and self-cleaning. Mimicking gecko toe pad structure leads to the development of new types of fibrillar adhesives useful for various applications. In this Concept article, in addition to the design of adhesive mimics by replicating gecko geometric features, we show a new trend of rational design by adding other physical, chemical, and biological principles on to the geometric merits, for enhancing robustness, responsive control, and durability. Current challenges and future directions are highlighted in the design and nanofabrication of biomimetic fibrillar adhesives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA