Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 276: 116315, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614001

RESUMEN

This study explores the role of endogenous indole-3-acetic acid (IAA) in modulating plant responses to pollution stress and its effect on pollutant accumulation, with a focus on fluoranthene (Flu) in ryegrass. To elucidate the mechanism, we employed an IAA promoter (α-aminobutyric acid [α-AB]) and an IAA inhibitor (naphthylphthalamic acid [NPA]) to regulate IAA levels and analyze Flu uptake characteristics. The experimental setup included a Flu treatment group (ryegrass with Flu addition) and a control group (ryegrass without Flu). Our findings demonstrate that Flu treatment enhanced IAA content and plant growth in ryegrass compared to the control. The Flu+AB treatment further enhanced these effects, while the Flu+NPA treatment exhibited a contrasting trend. Moreover, Flu+AB treatment led to increased Flu accumulation, in contrast to the inhibitory effect observed with Flu+NPA treatment. Flu treatment also enhanced the activities of key antioxidant enzymes (SOD, POD, CAT) and increased soluble sugar and protein levels, indicative of enzymatic and nonenzymatic defense responses, respectively. The Flu+AB treatment amplified these responses, whereas the Flu+NPA treatment attenuated them. Significantly, Flu treatment raised H+-ATPase activity compared to the control, an effect further elevated by Flu+AB treatment and diminished by Flu+NPA treatment. A random forest analysis suggested that Flu accumulation dependency varied under different treatments: it relied more on H+-ATPase activity under Flu+AB treatment and more on SOD activity under Flu+NPA treatment. Additionally, Flu+AB treatment boosted the transpiration rate in ryegrass, thereby increasing the Flu translocation factor, a trend reversed by Flu+NPA treatment. This research highlights crucial factors influencing Flu accumulation in ryegrass, offering potential new avenues for controlling the gathering of contaminants within plant systems.


Asunto(s)
Fluorenos , Ácidos Indolacéticos , Lolium , Superóxido Dismutasa , Fluorenos/toxicidad , Lolium/efectos de los fármacos , Lolium/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Superóxido Dismutasa/metabolismo , Contaminantes del Suelo/toxicidad , Reguladores del Crecimiento de las Plantas , Antioxidantes/metabolismo
2.
Ecotoxicol Environ Saf ; 261: 115088, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37285675

RESUMEN

Fluoranthene (Flu) uptake by plants is affected by plant growth and environmental concentration. Although plant growth processes, including substance synthesis and antioxidant enzyme activities, have been reported to regulate Flu uptake, their contributions have been poorly evaluated. Moreover, the effect of Flu concentration is little known. Here, low concentrations (0, 1, 5, and 10 mg/L) and high concentrations (20, 30, and 40 mg/L) of Flu were set to compare the changes in Flu uptake by ryegrass (Lolium multiflorum Lam.). Indices of plant growth (biomass, root length, root area, root tip number, and photosynthesis and transpiration rates), substance synthesis (indole acetic acid [IAA] content), and antioxidant enzyme activities (superoxide dismutase [SOD], peroxidase [POD], and catalase [CAT]) were recorded to unravel the mechanism of Flu uptake. Findings suggested that the Langmuir model fitted Flu uptake by ryegrass well. Flu absorption capacity in the root was stronger than that that in the leaf. Flu bioconcentration and translocation factors increased then reduced with the increase in Flu concentration and reached the maximum value under 5 mg/L Flu treatment. Plant growth and IAA content had the same pattern as before bioconcentration factor (BCF). SOD and POD activities increased then decreased with Flu concentration and reached their highest levels under 30 and 20 mg/L Flu treatments, respectively, whereas CAT activity decreased continuously and reached its lowest level under 40 mg/L Flu treatment. Variance partitioning analysis indicated that IAA content had the greatest significant effect on Flu uptake under low-concentration Flu treatments, whereas antioxidant enzyme activities had the greatest significant effect on Flu uptake under high-concentration Flu treatments. Revealing the concentration-dependent mechanisms of Flu uptake could provide a basis for regulating pollutant accumulation in plants.


Asunto(s)
Antioxidantes , Lolium , Antioxidantes/farmacología , Peroxidasa , Superóxido Dismutasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA