Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Pathog ; 19(2): e1011082, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36800400

RESUMEN

Extraintestinal pathogenic Escherichia coli (ExPEC) is the leading cause of adult life-threatening sepsis and urinary tract infections (UTI). The emergence and spread of multidrug-resistant (MDR) ExPEC strains result in a considerable amount of treatment failure and hospitalization costs, and contribute to the spread of drug resistance amongst the human microbiome. Thus, an effective vaccine against ExPEC would reduce morbidity and mortality and possibly decrease carriage in healthy or diseased populations. A comparative genomic analysis demonstrated a gene encoding an invasin-like protein, termed sinH, annotated as an autotransporter protein, shows high prevalence in various invasive ExPEC phylogroups, especially those associated with systemic bacteremia and UTI. Here, we evaluated the protective efficacy and immunogenicity of a recombinant SinH-based vaccine consisting of either domain-3 or domains-1,2, and 3 of the putative extracellular region of surface-localized SinH. Immunization of a murine host with SinH-based antigens elicited significant protection against various strains of the pandemic ExPEC sequence type 131 (ST131) as well as multiple sequence types in two distinct models of infection (colonization and bacteremia). SinH immunization also provided significant protection against ExPEC colonization in the bladder in an acute UTI model. Immunized cohorts produced significantly higher levels of vaccine-specific serum IgG and urinary IgG and IgA, findings consistent with mucosal protection. Collectively, these results demonstrate that autotransporter antigens such as SinH may constitute promising ExPEC phylogroup-specific and sequence-type effective vaccine targets that reduce E. coli colonization and virulence.


Asunto(s)
Bacteriemia , Infecciones por Escherichia coli , Escherichia coli Patógena Extraintestinal , Infecciones Urinarias , Animales , Humanos , Ratones , Escherichia coli , Sistemas de Secreción Tipo V/genética , Infecciones por Escherichia coli/prevención & control , Escherichia coli Patógena Extraintestinal/genética , Vacunación , Factores de Virulencia/genética , Vacunas Sintéticas , Infecciones Urinarias/prevención & control , Bacteriemia/prevención & control , Inmunoglobulina G/farmacología
2.
Infect Immun ; 92(5): e0044023, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38591882

RESUMEN

Extraintestinal pathogenic Escherichia coli (ExPEC) is a leading cause of worldwide morbidity and mortality, the top cause of antimicrobial-resistant (AMR) infections, and the most frequent cause of life-threatening sepsis and urinary tract infections (UTI) in adults. The development of an effective and universal vaccine is complicated by this pathogen's pan-genome, its ability to mix and match virulence factors and AMR genes via horizontal gene transfer, an inability to decipher commensal from pathogens, and its intimate association and co-evolution with mammals. Using a pan virulome analysis of >20,000 sequenced E. coli strains, we identified the secreted cytolysin α-hemolysin (HlyA) as a high priority target for vaccine exploration studies. We demonstrate that a catalytically inactive pure form of HlyA, expressed in an autologous host using its own secretion system, is highly immunogenic in a murine host, protects against several forms of ExPEC infection (including lethal bacteremia), and significantly lowers bacterial burdens in multiple organ systems. Interestingly, the combination of a previously reported autotransporter (SinH) with HlyA was notably effective, inducing near complete protection against lethal challenge, including commonly used infection strains ST73 (CFT073) and ST95 (UTI89), as well as a mixture of 10 of the most highly virulent sequence types and strains from our clinical collection. Both HlyA and HlyA-SinH combinations also afforded some protection against UTI89 colonization in a murine UTI model. These findings suggest recombinant, inactive hemolysin and/or its combination with SinH warrant investigation in the development of an E. coli vaccine against invasive disease.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Vacunas contra Escherichia coli , Escherichia coli Patógena Extraintestinal , Proteínas Hemolisinas , Animales , Escherichia coli Patógena Extraintestinal/genética , Escherichia coli Patógena Extraintestinal/inmunología , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/inmunología , Ratones , Proteínas Hemolisinas/inmunología , Proteínas Hemolisinas/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/inmunología , Vacunas contra Escherichia coli/inmunología , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/genética , Femenino , Factores de Virulencia/genética , Factores de Virulencia/inmunología , Sistemas de Secreción Tipo V/inmunología , Sistemas de Secreción Tipo V/genética , Modelos Animales de Enfermedad , Humanos
3.
PLoS Pathog ; 16(9): e1008851, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32986782

RESUMEN

Enteroaggregative Escherichia coli (EAEC) is a significant cause of acute and chronic diarrhea, foodborne outbreaks, infections of the immunocompromised, and growth stunting in children in developing nations. There is no vaccine and resistance to antibiotics is rising. Unlike related E. coli pathotypes that are often associated with acute bouts of infection, EAEC is associated with persistent diarrhea and subclinical long-term colonization. Several secreted virulence factors have been associated with EAEC pathogenesis and linked to disease in humans, less certain are the molecular drivers of adherence to the intestinal mucosa. We previously established human intestinal enteroids (HIEs) as a model system to study host-EAEC interactions and aggregative adherence fimbriae A (AafA) as a major driver of EAEC adherence to HIEs. Here, we report a large-scale assessment of the host response to EAEC adherence from all four segments of the intestine across at least three donor lines for five E. coli pathotypes. The data demonstrate that the host response in the duodenum is driven largely by the infecting pathotype, whereas the response in the colon diverges in a patient-specific manner. Major pathways altered in gene expression in each of the four enteroid segments differed dramatically, with responses observed for inflammation, apoptosis and an overwhelming response to different mucin genes. In particular, EAEC both associated with large mucus droplets and specific mucins at the epithelial surface, binding that was ameliorated when mucins were removed, a process dependent on AafA. Pan-screening for glycans for binding to purified AafA identified the human ligand as heparan sulfate proteoglycans (HSPGs). Removal of HSPG abrogated EAEC association with HIEs. These results may mean that the human intestine responds remarkably different to distinct pathobionts that is dependent on the both the individual and intestinal segment in question, and uncover a major role for surface heparan sulfate proteoglycans as tropism-driving factor in adherence and/or colonization.


Asunto(s)
Adhesión Bacteriana/fisiología , Infecciones por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Adhesinas de Escherichia coli/genética , Escherichia coli/metabolismo , Fimbrias Bacterianas/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Factores de Virulencia/metabolismo
4.
Exp Dermatol ; 27(9): 1053-1057, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29957828

RESUMEN

To discover novel biomarkers of psoriasis, a target-specific antibody array screening of serum samples from psoriasis patients was initially performed. The results revealed that vascular endothelial growth factor receptor 3 (VEGFR-3) was significantly elevated in the sera of psoriasis patients, compared to healthy controls. Next, ELISA validation studies in a larger cohort of psoriasis patients (N = 73) were conducted, which confirmed that serum VEGFR-3 was indeed significantly increased in patients with psoriasis compared to healthy controls (P < 0.001). Furthermore, receiver operating characteristic curve analysis demonstrated that serum VEGFR-3 exhibited potential in distinguishing healthy controls from psoriasis patients: area under the curve = 0.85, P < 0.001. In addition, serum levels of VEGFR-3 were correlated with Psoriasis Area Severity Index scores (R = 0.32, P = 0.008) in psoriasis patients. Interestingly, serum VEGFR-3 levels were significantly elevated in psoriatic arthritis compared to non-psoriatic arthritis (P = 0.026). A pilot longitudinal study demonstrated that serum levels of VEGFR-3 could reflect disease progression in psoriasis. Collectively, serum VEGFR-3 may have a clinical value in monitoring disease activity of psoriasis.


Asunto(s)
Psoriasis/sangre , Receptor 3 de Factores de Crecimiento Endotelial Vascular/sangre , Biomarcadores/sangre , Estudios de Casos y Controles , Humanos , Curva ROC , Índice de Severidad de la Enfermedad
5.
Gut Microbes ; 16(1): 2359691, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38825856

RESUMEN

The emergence of antimicrobial resistance (AMR) is a principal global health crisis projected to cause 10 million deaths annually worldwide by 2050. While the Gram-negative bacteria Escherichia coli is commonly found as a commensal microbe in the human gut, some strains are dangerously pathogenic, contributing to the highest AMR-associated mortality. Strains of E. coli that can translocate from the gastrointestinal tract to distal sites, called extraintestinal E. coli (ExPEC), are particularly problematic and predominantly afflict women, the elderly, and immunocompromised populations. Despite nearly 40 years of clinical trials, there is still no vaccine against ExPEC. One reason for this is the remarkable diversity in the ExPEC pangenome across pathotypes, clades, and strains, with hundreds of genes associated with pathogenesis including toxins, adhesins, and nutrient acquisition systems. Further, ExPEC is intimately associated with human mucosal surfaces and has evolved creative strategies to avoid the immune system. This review summarizes previous and ongoing preclinical and clinical ExPEC vaccine research efforts to help identify key gaps in knowledge and remaining challenges.


Asunto(s)
Infecciones por Escherichia coli , Vacunas contra Escherichia coli , Escherichia coli Patógena Extraintestinal , Humanos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/prevención & control , Vacunas contra Escherichia coli/inmunología , Escherichia coli Patógena Extraintestinal/genética , Animales
6.
Arch Immunol Ther Exp (Warsz) ; 65(2): 111-121, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27592176

RESUMEN

Autoimmune diseases occur when the immune system generates proinflammatory molecules and autoantibodies that mistakenly attack their own body. Traditional diagnosis of autoimmune disease is primarily based on physician assessment combined with core laboratory tests. However, these tests are not sensitive enough to detect early molecular events, and quite often, it is too late to control these autoimmune diseases and reverse tissue damage when conventional tests show positivity for disease. It is fortunate that during the past decade, research in nanotechnology has provided enormous opportunities for the development of ultrasensitive biosensors in detecting early biomarkers with high sensitivity. Biosensors consist of a biorecognition element and a transducer which are able to facilitate an accurate detection of proinflammatory molecules, autoantibodies and other disease-causing molecules. Apparently, novel biosensors could be superior to traditional metrics in assessing the drug efficacy in clinical trials, especially when specific biomarkers are indicative of the pathogenesis of disease. Furthermore, the portability of a biosensor enables the development of point-of-care devices. In this review, various types of biomolecule sensing systems, including electrochemical, optical and mechanical sensors, and their applications and future potentials in autoimmune disease treatment were discussed.


Asunto(s)
Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/terapia , Biomarcadores/metabolismo , Técnicas Biosensibles , Enfermedades Autoinmunes/metabolismo , Electroquímica , Fluorescencia , Humanos , Inflamación , Nanotecnología , Sensibilidad y Especificidad , Espectrometría Raman , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA