Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 532
Filtrar
1.
Nature ; 612(7941): 787-794, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36450980

RESUMEN

Medulloblastoma (MB) is the most common malignant childhood brain tumour1,2, yet the origin of the most aggressive subgroup-3 form remains elusive, impeding development of effective targeted treatments. Previous analyses of mouse cerebella3-5 have not fully defined the compositional heterogeneity of MBs. Here we undertook single-cell profiling of freshly isolated human fetal cerebella to establish a reference map delineating hierarchical cellular states in MBs. We identified a unique transitional cerebellar progenitor connecting neural stem cells to neuronal lineages in developing fetal cerebella. Intersectional analysis revealed that the transitional progenitors were enriched in aggressive MB subgroups, including group 3 and metastatic tumours. Single-cell multi-omics revealed underlying regulatory networks in the transitional progenitor populations, including transcriptional determinants HNRNPH1 and SOX11, which are correlated with clinical prognosis in group 3 MBs. Genomic and Hi-C profiling identified de novo long-range chromatin loops juxtaposing HNRNPH1/SOX11-targeted super-enhancers to cis-regulatory elements of MYC, an oncogenic driver for group 3 MBs. Targeting the transitional progenitor regulators inhibited MYC expression and MYC-driven group 3 MB growth. Our integrated single-cell atlases of human fetal cerebella and MBs show potential cell populations predisposed to transformation and regulatory circuitries underlying tumour cell states and oncogenesis, highlighting hitherto unrecognized transitional progenitor intermediates predictive of disease prognosis and potential therapeutic vulnerabilities.


Asunto(s)
Neoplasias Encefálicas , Transformación Celular Neoplásica , Feto , Meduloblastoma , Humanos , Neoplasias Encefálicas/patología , Transformación Celular Neoplásica/patología , Neoplasias Cerebelosas/patología , Cerebelo/citología , Cerebelo/patología , Feto/citología , Feto/patología , Meduloblastoma/patología , Células-Madre Neurales/citología , Células-Madre Neurales/patología , Pronóstico
2.
Nucleic Acids Res ; 52(D1): D72-D80, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37904589

RESUMEN

G-quadruplexes (G4s) are non-canonical four-stranded structures and are emerging as novel genetic regulatory elements. However, a comprehensive genomic annotation of endogenous G4s (eG4s) and systematic characterization of their regulatory network are still lacking, posing major challenges for eG4 research. Here, we present EndoQuad (https://EndoQuad.chenzxlab.cn/) to address these pressing issues by integrating high-throughput experimental data. First, based on high-quality genome-wide eG4s mapping datasets (human: 1181; mouse: 24; chicken: 2) generated by G4 ChIP-seq/CUT&Tag, we generate a reference set of genome-wide eG4s. Our multi-omics analyses show that most eG4s are identified in one or a few cell types. The eG4s with higher occurrences across samples are more structurally stable, evolutionarily conserved, enriched in promoter regions, mark highly expressed genes and associate with complex regulatory programs, demonstrating higher confidence level for further experiments. Finally, we integrate millions of functional genomic variants and prioritize eG4s with regulatory functions in disease and cancer contexts. These efforts have culminated in the comprehensive and interactive database of experimentally validated DNA eG4s. As such, EndoQuad enables users to easily access, download and repurpose these data for their own research. EndoQuad will become a one-stop resource for eG4 research and lay the foundation for future functional studies.


Asunto(s)
Bases de Datos Genéticas , G-Cuádruplex , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Humanos , Ratones , Genoma , Genómica
3.
J Biol Chem ; 300(6): 107309, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657867

RESUMEN

Novel components in the noncanonical Hippo pathway that mediate the growth, metastasis, and drug resistance of breast cancer (BC) cells need to be identified. Here, we showed that expression of SAM and SH3 domain-containing protein 1 (SASH1) is negatively correlated with expression of mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) in a subpopulation of patients with luminal-subtype BC. Downregulated SASH1 and upregulated MAP4K4 synergistically regulated the proliferation, migration, and invasion of luminal-subtype BC cells. The expression of LATS2, SASH1, and YAP1 and the phosphorylation of YAP1 were negatively regulated by MAP4K4, and LATS2 then phosphorylated SASH1 to form a novel MAP4K4-LATS2-SASH1-YAP1 cascade. Dephosphorylation of Yes1 associated transcriptional regulator (YAP1), YAP1/TAZ nuclear translocation, and downstream transcriptional regulation of YAP1 were promoted by the combined effects of ectopic MAP4K4 expression and SASH1 silencing. Targeted inhibition of MAP4K4 blocked proliferation, cell migration, and ER signaling both in vitro and in vivo. Our findings reveal a novel MAP4K4-LATS2-SASH1-YAP1 phosphorylation cascade, a noncanonical Hippo pathway that mediates ER signaling, tumorigenesis, and metastasis in breast cancer. Targeted intervention with this noncanonical Hippo pathway may constitute a novel alternative therapeutic approach for endocrine-resistant BC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias de la Mama , Péptidos y Proteínas de Señalización Intracelular , Proteínas Serina-Treonina Quinasas , Factores de Transcripción , Proteínas Supresoras de Tumor , Proteínas Señalizadoras YAP , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Femenino , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Animales , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Ratones , Transducción de Señal , Metástasis de la Neoplasia , Movimiento Celular , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Fosforilación , Ratones Desnudos , Carcinogénesis/genética , Carcinogénesis/metabolismo
4.
Exp Cell Res ; 439(1): 114094, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38750718

RESUMEN

Pirarubicin (THP) is a new generation of cell cycle non-specific anthracycline-based anticancer drug. In the clinic, THP and THP combination therapies have been shown to be effective in hepatocellular carcinoma (HCC) patients with transcatheter arterial chemoembolization (TACE) without serious side effects. However, drug resistance limits its therapeutic efficacy. Berberine (BBR), an isoquinoline alkaloid, has been shown to possess antitumour properties against various malignancies. However, the synergistic effect of BBR and THP in the treatment of HCC is unknown. In the present study, we demonstrated for the first time that BBR sensitized HCC cells to THP, including enhancing THP-induced growth inhibition and apoptosis of HCC cells. Moreover, we found that BBR sensitized THP by reducing the expression of autophagy-related 4B (ATG4B). Mechanistically, the inhibition of HIF1α-mediated ATG4B transcription by BBR ultimately led to attenuation of THP-induced cytoprotective autophagy, accompanied by enhanced growth inhibition and apoptosis in THP-treated HCC cells. Tumor-bearing experiments in nude mice showed that the combination treatment with BBR and THP significantly suppressed the growth of HCC xenografts. These results reveal that BBR is able to strengthen the killing effect of THP on HCC cells by repressing the ATG4B-autophagy pathway, which may provide novel insights into the improvement of chemotherapeutic efficacy of THP, and may be conducive to the further clinical application of THP in HCC treatment.


Asunto(s)
Apoptosis , Proteínas Relacionadas con la Autofagia , Autofagia , Berberina , Carcinoma Hepatocelular , Doxorrubicina , Neoplasias Hepáticas , Ratones Desnudos , Berberina/farmacología , Berberina/análogos & derivados , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Autofagia/efectos de los fármacos , Animales , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Ratones , Apoptosis/efectos de los fármacos , Doxorrubicina/farmacología , Doxorrubicina/análogos & derivados , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Ratones Endogámicos BALB C , Antineoplásicos/farmacología , Transducción de Señal/efectos de los fármacos , Cisteína Endopeptidasas
5.
Chem Soc Rev ; 53(11): 5781-5861, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38690681

RESUMEN

Ferroelectricity, which has diverse important applications such as memory elements, capacitors, and sensors, was first discovered in a molecular compound, Rochelle salt, in 1920 by Valasek. Owing to their superiorities of lightweight, biocompatibility, structural tunability, mechanical flexibility, etc., the past decade has witnessed the renaissance of molecular ferroelectrics as promising complementary materials to commercial inorganic ferroelectrics. Thus, on the 100th anniversary of ferroelectricity, it is an opportune time to look into the future, specifically into how to push the boundaries of material design in molecular ferroelectric systems and finally overcome the hurdles to their commercialization. Herein, we present a comprehensive and accessible review of the appealing development of molecular ferroelectrics over the past 10 years, with an emphasis on their structural diversity, chemical design, exceptional properties, and potential applications. We believe that it will inspire intense, combined research efforts to enrich the family of high-performance molecular ferroelectrics and attract widespread interest from physicists and chemists to better understand the structure-function relationships governing improved applied functional device engineering.

6.
Nano Lett ; 24(17): 5165-5173, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38630980

RESUMEN

Tuning electronic characteristics of metal-ligand bonds based on reaction pathways to achieve efficient catalytic processes has been widely studied and proven to be feasible in homogeneous catalysis, but it is scarcely investigated in heterogeneous catalysis. Herein, we demonstrate the regulation of the electronic configuration of Ir-O bonds in an Ir single-atom catalyst according to the borane activation mechanism. Ir-O bonds in Ir1/Ni(OH)x are found to be more electron-poor than those in Ir1/NiOx. Despite the mild solvent-free conditions and ambient temperature, Ir1/Ni(OH)x exhibits outstanding performance for the hydroboration of alkenes, furnishing the desired alkylboronic esters with a turnover frequency value of ≤3060 h-1 and 99% anti-Markovnikov selectivity, which is significantly better than that of Ir1/NiOx (42 h-1). It is further proven that the more electron-poor Ir-O bonds as active centers are more oxidative and so benefit the activation of the H-B bond in the reductive pinacolborane.

7.
Nano Lett ; 24(15): 4672-4681, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38587873

RESUMEN

The bifunctional oxygen electrocatalyst is the Achilles' heel of achieving robust reversible Zn-air batteries (ZABs). Herein, durable bifunctional oxygen electrocatalysis in alkaline media is realized on atomic Fe-N4-C sites reinforced by NixCo3-xO4 (NixCo3-xO4@Fe1/NC). Compared with that of pristine Fe1/NC, the stability of the oxygen evolution reaction (OER) is increased 10 times and the oxygen reduction reaction (ORR) performance is also improved. The steric hindrance alters the valence electron at the Fe-N4-C sites, resulting in a shorter Fe-N bond and enhanced stability of the Fe-N4-C sites. The corresponding solid-state ZABs exhibit an ultralong lifespan (>460 h at 5 mA cm-2) and high rate performance (from 2 to 50 mA cm-2). Furthermore, the structural evolution of NixCo3-xO4@Fe1/NC before and after the OER and ORR as well as charge-discharge cycling is explored. This work develops an efficient strategy for improving bifunctional oxygen electrocatalysis and possibly other processes.

8.
Small ; 20(9): e2306840, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37863825

RESUMEN

Electrocatalytic reduction of dinitrogen to ammonia has attracted significant research interest. Herein, it reports the boosting performance of electrocatalytic nitrogen reduction on Ti2 CO2 MXene with an oxygen vacancy through biaxial tensile strain engineering. Specifically, tensile strain modified electronic structures and formation energy of oxygen vacancy are evaluated. The exposed Ti atoms with additional electron states near the Fermi level serve as active site for intermediate adsorption, leading to superior catalytic performance (Ulimit = -0.44 V) under 2.5% biaxial tensile strain through a distal mechanism. However, the two sides of the "Sabatier optimum" in volcano plot are not limited by two different electronic steps, but are induced by the diverse adsorption behaviors of intermediates. Crucially, the "Sabatier optimum" results from the different response speeds of the adsorption energy for *N2 and *NNH to strains. Moreover, the authors observe conventional d-band adsorption for *N2 and *NNH, non-linear adsorption for *NNH2 , and abnormal d-band adsorption for *N, *NH, *NH2 , and *NH3 , which can be explained by the competition between attractive orbital hybridization and repulsive orbital orthogonalization with the spin-polarized d-band model, which further clarifies the contributions of 3σ → dz2 and dxz /dyz → 2π* to the overall population of bonding and anti-bonding states.

9.
Clin Endocrinol (Oxf) ; 100(1): 76-86, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37859522

RESUMEN

OBJECTIVE: Treatment indication of maternal subclinical hypothyroidism (SCH) is undetermined, despite the wide administration of levothyroxine for maternal overt hypothyroidism (OH). This study aimed to evaluate the therapeutic effect of levothyroxine for maternal SCH and OH in real-world practice, with a focus on early child neurodevelopment. DESIGN: Prospective cohort study. PATIENTS AND MEASUREMENTS: Pregnant women diagnosed with SCH at the first antenatal visit were enroled and compared to those diagnosed with OH. Thyroid follow-ups were conducted during pregnancy. Early child neurodevelopment was assessed using the Gesell Development Diagnosis Scale (GDDS) at 1, 3, 6, 12 and 24 months of age. RESULTS: From January 2012 to December 2013, a total of 442 pregnant women were included in final analysis, among whom 194 and 248 were assigned to the SCH and OH groups, respectively. The percentage of levothyroxine therapy at the first antenatal visit was significantly lower in the SCH group than that in the OH group (91.24% vs. 97.58%, p < .01), with a similar treatment rate at delivery (99.4% vs. 100%, p > .05). Notably, GDDS scores were lower in the SCH group than those in the OH group at 6 months to 2 years of age, which was confirmed by subgroup analyses and sensitivity analyses. CONCLUSIONS: Children born with maternal SCH demonstrated slightly lower neuropsychological scores at 6 months to 2 years of age compared to those with maternal OH in the clinical practice. The therapeutic effect of maternal SCH on the child neurodevelopment requires further exploration.


Asunto(s)
Hipotiroidismo , Complicaciones del Embarazo , Niño , Femenino , Humanos , Embarazo , Tiroxina/uso terapéutico , Estudios Prospectivos , Hipotiroidismo/tratamiento farmacológico , Hipotiroidismo/diagnóstico , Complicaciones del Embarazo/tratamiento farmacológico , Complicaciones del Embarazo/diagnóstico , Tirotropina/uso terapéutico
10.
Environ Sci Technol ; 58(15): 6670-6681, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38564406

RESUMEN

The underlying adaptative mechanisms of anammox bacteria to salt stress are still unclear. The potential role of the anammoxosome in modulating material and energy metabolism in response to salinity stress was investigated in this study. The results showed that anammox bacteria increased membrane fluidity and decreased mechanical properties by shortening the ladderane fatty acid chain length of anammoxosome in response to salinity shock, which led to the breakdown of the proton motive force driving ATP synthesis and retarded energy metabolism activity. Afterward, the fatty acid chain length and membrane properties were recovered to enhance the energy metabolic activity. The relative transmission electron microscopy (TEM) area proportion of anammoxosome decreased from 55.9 to 38.9% under salinity stress. The 3D imaging of the anammox bacteria based on Synchrotron soft X-ray tomography showed that the reduction in the relative volume proportion of the anammoxosome and the concave surfaces was induced by salinity stress, which led to the lower energy expenditure of the material transportation and provided more binding sites for enzymes. Therefore, anammox bacteria can modulate nitrogen and energy metabolism by changing the membrane properties and morphology of the anammoxosome in response to salinity stress. This study broadens the response mechanism of anammox bacteria to salinity stress.


Asunto(s)
Oxidación Anaeróbica del Amoníaco , Bacterias , Anaerobiosis , Bacterias/metabolismo , Ácidos Grasos/metabolismo , Estrés Salino , Oxidación-Reducción , Salinidad , Nitrógeno/metabolismo
11.
Environ Toxicol ; 39(5): 2817-2829, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38291708

RESUMEN

INTRODUCTION: Allergic rhinitis (AR) is one of the leading allergic diseases worldwide. Allergen immunotherapy (AIT) induces persistent specific allergen tolerance to achieve remission of the symptoms in AR patients. We creatively conducted the intra-cervical lymphatic immunotherapy (ICLIT) for AR patients. However, the underlying molecular mechanism of immune cell response of AIT in AR remains elusive. METHOD: To investigate the transcriptome profile in AR patients who underwent ICLIT, we comprehensively investigated the transcriptional changes in B cells from peripheral blood mononuclear cells of AR patient by single-cell RNA sequencing. Immunoglobulins and relative key gene, which influences the B cell differentiation, was demonstrated. The biomarkers' association with different types of tumors was investigated. RESULTS: Naive B cells, germinal center B cells, activated memory B cells, and memory B cells constituted the B cells subsets. The expression of IGHE, IGHGs, IGHA, IGHD, and IGHM from memory B cells was validated. Pseudotime analysis further indicated the dynamic change from the expression of the immunoglobulins in the memory B cells, suggesting that ITGB1 may contribute to the differentiation procedure of memory B cells. The cell-cell communication among these immune cells demonstrated the significantly enhanced CD23, BTLA signaling after ICLIT in AR patient. ITGB1 was upregulated in 13 tumors and downregulated in six others. High ITGB1 expression was linked to poor prognosis in eight types of tumors. ITGB1 expression showed correlations with tumor mutation burden, tissue purity, and microsatellite instability in different types of tumors. DISCUSSION: ITGB1 was demonstrated as a potential biomarker for AR patients after ICLIT and is significant in identifying immune infiltration in tumor tissue and predicting tumor prognosis.


Asunto(s)
Neoplasias , Rinitis Alérgica , Humanos , Leucocitos Mononucleares , Rinitis Alérgica/genética , Rinitis Alérgica/terapia , Rinitis Alérgica/diagnóstico , Inmunoglobulinas , Biomarcadores , Análisis de Secuencia de ARN
12.
Nano Lett ; 23(16): 7419-7426, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37539988

RESUMEN

Multifarious molecular ferroelectrics with multipolar axial characteristics have emerged in recent years, enriching the scenarios for energy harvesting, sensing, and information processing. The increased polar axes have enhanced the urgency of distinguishing different polarization states in material design, mechanism exploration, etc. However, conventional methods hardly meet the requirements of in situ, fast, microscale, contactless, and nondestructive features due to their inherent limitations. Herein, SHG polarimetry is introduced to probe the multioriented polarizations on a nanosized multiaxial molecular ferroelectric, i.e., TMCM-CdCl3 nanoplates, as an example. Combined with the analysis of the second-order susceptibility tensor, SHG polarimetry could serve as an effective method to detect the polarization orders and domain distributions of molecular ferroelectrics. Profiting from the full-optical feature, SHG polarimetry can even be performed on samples covered by transparent mediums, 2D materials, or thin metal electrodes. Our research might spark further fundamental studies and expand the application boundaries of next-generation ferroelectric materials.

13.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2210-2221, 2024 Apr.
Artículo en Zh | MEDLINE | ID: mdl-38812236

RESUMEN

In this study, J774A.1 macrophages stimulated by lipopolysaccharide(LPS) and adenosine triphosphate(ATP) were used to establish an in vitro model of pyroptosis, and the intervention mechanism of free total rhubarb anthraquinones(FTRAs) on pyroptosis was investigated. J774A.1 macrophages were cultured in vitro, and the experiment was assigned to the control group and groups with different concentrations of LPS(0.25, 0.5, and 1 µg·mL~(-1)) and ATP(1.25, 2.5, and 5 mmol·L~(-1)). An in vitro model of macrophage pyroptosis was established by detecting cell viability through CCK-8, propidium iodide(PI) apoptotic cell staining, lactate dehydrogenase(LDH), interleukin(IL)-18, and tumor necrosis factor(TNF)-α release. Then, J774A.1 macrophages were randomly divided into six groups: blank control group, LPS+ATP group, high-dose FTRA group, and low, medium, and high-dose FTRA pre-protection group. The phenotypic characteristics and key indicators of pyroptosis were detected as the basis for evaluating the effect of FTRAs on pyroptosis induced by LPS and ATP. Western blot and RT-PCR were used to detect the expression levels of protein and mRNA related to the pyroptosis pathway in caspase-1/11 and elucidate the molecular mechanism of the anti-pyroptosis effect. The results showed that the stimulation condition of 0.50 µg·mL~(-1) LPS+5.00 mmol·L~(-1) ATP was the most effective in the in vitro model of macrophage pyroptosis. FTRAs pre-protected cells for 24 h and then can increase cell viability under pyroptosis conditions, alleviate cell damage, lower the positive rate of PI staining, and reduce the release of LDH, IL-18, and TNF-α. FTRAs were able to significantly inhibit the activation of GSDMD proteins and significantly down-regulate the protein expression of the pyroptosis pathway signature molecules, TLR4, NLRP3, cleaved-caspase-1, and cleaved-caspase-11, but they had no significant effect on ASC proteins. FTRAs were also able to significantly inhibit the mRNA expression of caspase-1, caspase-11, and GSDMD. These results indicate that FTRAs have an inhibitory effect on the pyroptosis model induced by LPS and ATP and play an anti-pyroptosis effect by regulating classical and non-classical pyroptosis signaling pathways and reducing the production of inflammatory cytokines.


Asunto(s)
Antraquinonas , Macrófagos , Piroptosis , Rheum , Piroptosis/efectos de los fármacos , Rheum/química , Animales , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/citología , Antraquinonas/farmacología , Antraquinonas/química , Línea Celular , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Adenosina Trifosfato/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Lipopolisacáridos/farmacología , Supervivencia Celular/efectos de los fármacos , Interleucina-18/genética , Interleucina-18/metabolismo
14.
Angew Chem Int Ed Engl ; 63(21): e202400625, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38556897

RESUMEN

Single-metal atomic sites and vacancies can accelerate the transfer of photogenerated electrons and enhance photocatalytic performance in photocatalysis. In this study, a series of nickel hydroxide nanoboards (Ni(OH)x NBs) with different loadings of single-atomic Ru sites (w-SA-Ru/Ni(OH)x) were synthesized via a photoreduction strategy. In such catalysts, single-atomic Ru sites are anchored to the vacancies surrounding the pits. Notably, the SA-Ru/Ni(OH)x with 0.60 wt % Ru loading (0.60-SA-Ru/Ni(OH)x) exhibits the highest catalytic performance (27.6 mmol g-1 h-1) during the photocatalytic reduction of CO2 (CO2RR). Either superfluous (0.64 wt %, 18.9 mmol g-1 h-1; 3.35 wt %, 9.4 mmol-1 h-1) or scarce (0.06 wt %, 15.8 mmol g-1 h-1; 0.29 wt %, 21.95 mmol g-1 h-1; 0.58 wt %, 23.4 mmol g-1 h-1) of Ru sites have negative effect on its catalytic properties. Density functional theory (DFT) calculations combined with experimental results revealed that CO2 can be adsorbed in the pits; single-atomic Ru sites can help with the conversion of as-adsorbed CO2 and lower the energy of *COOH formation accelerating the reaction; the excessive single-atomic Ru sites occupy vacancies that retard the completion of CO2RR.

15.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 337-342, 2024 Apr 15.
Artículo en Zh | MEDLINE | ID: mdl-38660896

RESUMEN

OBJECTIVES: To investigate the effects of different angles of pulmonary surfactant (PS) administration on the incidence of bronchopulmonary dysplasia and intracranial hemorrhage in preterm infants. METHODS: A prospective study was conducted on 146 preterm infants (gestational age <32 weeks) admitted to the Department of Neonatology, Provincial Hospital Affiliated to Anhui Medical University from January 2019 to May 2023. The infants were randomly assigned to different angles for injection of pulmonary surfactant groups: 0° group (34 cases), 30° group (36 cases), 45° group (38 cases), and 60° group (38 cases). Clinical indicators and outcomes were compared among the groups. RESULTS: The oxygenation index was lower in the 60° group compared with the other three groups, with shorter invasive ventilation time and oxygen use time, and a lower incidence of bronchopulmonary dysplasia than the other three groups (P<0.05). The incidence of intracranial hemorrhage was lower in the 60° group compared to the 0° group (P<0.05). The cure rate in the 60° group was higher than that in the 0° group and the 30° group (P<0.05). CONCLUSIONS: The clinical efficacy of injection of pulmonary surfactant at a 60° angle is higher than other angles, reducing the incidence of intracranial hemorrhage and bronchopulmonary dysplasia in preterm infants.


Asunto(s)
Displasia Broncopulmonar , Recien Nacido Prematuro , Hemorragias Intracraneales , Surfactantes Pulmonares , Humanos , Surfactantes Pulmonares/administración & dosificación , Recién Nacido , Estudios Prospectivos , Displasia Broncopulmonar/prevención & control , Displasia Broncopulmonar/tratamiento farmacológico , Displasia Broncopulmonar/etiología , Masculino , Femenino , Hemorragias Intracraneales/prevención & control , Hemorragias Intracraneales/inducido químicamente
16.
J Am Chem Soc ; 145(50): 27282-27294, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38063341

RESUMEN

Remarkable advances have been achieved in solution self-assembly of polypeptides from the perspective of nanostructures, mechanisms, and applications. Despite the intrinsic chirality of polypeptides, the promising generation of aqueous circularly polarized luminescence (CPL) based on their self-assembly has been rarely reported due to the weak fluorescence of most polypeptides and the indeterminate self-assembly mechanism. Here, we propose a facile strategy for achieving aqueous CPL based on the self-assembly of simple homopolypeptides modified with a terminal group featuring both twisted intramolecular charge transfer and aggregation-induced emission properties. A morphology-dependent CPL can be observed under different self-assembly conditions by altering the solvents. A nanotoroid-dispersed aqueous solution with detectable CPL can be obtained by using tetrahydrofuran as a good solvent for the self-assembly, which is attributed to the involvement of the terminal group in the chiral environment formed by the homopolypeptide chains. However, such a chiral packing mode cannot be realized in nanorods self-assembled from dioxane, resulting in an inactive CPL phenomenon. Furthermore, CPL signals can be greatly amplified by co-assembly of homopolypeptides with the achiral small molecule derived from the terminal group. This work not only provides a pathway to construct aqueous CPL-active homopolypeptide nanomaterials but also reveals a potential mechanism in the self-assembly for chiral production, transfer, and amplification in polypeptide-based nanostructures.


Asunto(s)
Luminiscencia , Nanoestructuras , Solventes , Fluorescencia , Péptidos
17.
Cancer Sci ; 114(6): 2238-2253, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36853166

RESUMEN

Anterior gradient-2 (AGR2) is crucial to breast cancer progression. However, its role in the tumor immune microenvironment remains unclear. RNA sequencing expression profiles and associated clinical information were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases, respectively. The AGR2 expression patterns were verified using clinical samples of breast cancer. Based on single-cell transcriptomic data, AGR2 expression patterns were identified and cell communication analysis was carried out. Furthermore, the roles of AGR2 in breast tumor progression were explored by a series of functional experiments. We found that DNA methylation was an important mechanism for regulating the expression patterns of AGR2. Patients with AGR2 low expression displayed an immune "hot" and immunosuppressive phenotype characterized by high abundance of tumor immune cell infiltration and increased enrichment scores for transforming growth factor-ß (TGF-ß) and epithelial-mesenchymal transition pathways, whereas patients with AGR2 high expression showed an opposite immunologic feature with a lack of immune cell infiltration, suggestive of an immune "cold" and desert phenotype. Moreover, single-cell analysis further revealed that AGR2 in malignant cells alters cell-cell interactions by coordinating cytokine-chemokine signaling and immune infiltration. Notably, two immunotherapy cohorts revealed that AGR2-coexpressed genes could serve as prognostic indicators of patient survival. In conclusion, AGR2 could promote breast cancer progression by affecting the tumor immune microenvironment. Patients with AGR2 low expression could be suitable for combination treatment with immune checkpoint inhibitor agents and TGF-ß blockers. Therefore, this study provides a theoretical foundation for developing a strategy for personalized immunotherapy to patients with breast cancer.


Asunto(s)
Neoplasias , Proteínas Oncogénicas , Proteínas Oncogénicas/genética , Mucoproteínas/genética , Citocinas , Comunicación Celular , Quimiocinas , Factor de Crecimiento Transformador beta/farmacología , Microambiente Tumoral
18.
Biochem Biophys Res Commun ; 664: 117-127, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37146559

RESUMEN

Diabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus. Reelin, an extracellular matrix protein, and its effector protein Disabled1 (DAB1) have been linked to cellular events and retinal development. However, whether and how Reelin/DAB1 signaling causes DR remains to be investigated. In our study, significantly increased expression of Reelin, very low density lipoprotein receptor (VLDLR), ApoE receptor 2 (ApoER2) and phosphorylated DAB1 in retinas of streptozotocin (STZ)-induced DR mouse model was observed, along with enhanced expression of proinflammatory factors. Similar results are confirmed in high glucose (HG)-treated human retinal pigment epithelium cell line ARPE-19. Surprisingly, dysregulated tripartite motif-containing 40 (TRIM40), an E3 ubiquitin ligase, is found to be involved in DR progression by bioinformatic analysis. We observe a negative correlation between TRIM40 and p-DAB1 protein expression levels under HG conditions. Importantly, we find that TRIM40 over-expression markedly ameliorates HG-induced p-DAB1, PI3K, p-protein B kinase (AKT) and inflammatory response in HG-treated cells, but dose not affect Reelin expression. Of note, Co-IP and double immunofluorescence identify an interaction between TRIM40 and DAB1. Furthermore, we show that TRIM40 enhances K48-linked polyubiquitination of DAB1, thereby promoting DAB1 degradation. Finally, promoting TRIM40 expression by intravenous injection of the constructed adeno-associated virus (AAV-TRIM40) markedly ameliorates DR phenotypes in STZ-treated mice, as indicated by the decreased blood glucose and glycosylated hemoglobin (HbAlc) levels, and increased hemoglobin contents. Additionally, diabetes-related elevation of acellular capillaries was also meliorated in mice over-expressing TRIM40. The electroretinogram (ERG) deficits were strongly rescued in mice receiving AAV-TRIM40 injection. Moreover, AAV-TRIM40 attenuates the inflammation and p-DAB1 expression in retinal tissues of STZ-treated mice. Collectively, our findings disclose a mechanism through which TRIM40 limits DAB1 stability under physiological conditions and reveals TRIM40 as a potential therapeutic target for the intervention of Reelin/DAB1 signaling, contributing to DR treatment.


Asunto(s)
Retinopatía Diabética , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Inflamación , Proteínas del Tejido Nervioso/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Transducción de Señal
19.
Biochem Biophys Res Commun ; 682: 397-406, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37852065

RESUMEN

TssJ-3 is an outer-membrane lipoprotein and is one of the key components of the type VI secretion system in Burkholderia pseudomallei. TssJ translocates effector proteins to target cells to induce innate immune response in the host. However, the tssJ gene has not been identified in B. pseudomallei and its function in this bacterium has not yet been characterized. tssJ-3 knockout and tssJ-3-complemented B. pseudomallei strains were constructed to determine the effects of tssJ-3 on bacterial growth, biofilm formation, flagellum synthesis, motility, host cell infection, and gene expression in B. pseudomallei. We found that the ΔtssJ-3 mutant strain of B. pseudomallei showed significantly suppressed biofilm formation, flagellum synthesis, bacterial growth, motility, and bacterial invasion into host cells (A549 cells). Furthermore, the ΔtssJ-3 mutation downregulated multiple key genes, including biofilm and flagellum-related genes in B. pseudomallei and induced interleukin-8 gene expression in host cells. These results suggest that tssJ-3, an important gene controlling TssJ-3 protein expression, has regulatory effects on biofilm formation and flagellum synthesis in B. pseudomallei. In addition, B. pseudomallei-derived tssJ-3 contributes to cell infiltration and intracellular replication. This study provides a molecular basis of tssJ-3 for developing therapeutic strategies against B. pseudomallei infections.


Asunto(s)
Burkholderia pseudomallei , Melioidosis , Sistemas de Secreción Tipo VI , Humanos , Burkholderia pseudomallei/genética , Virulencia/genética , Melioidosis/microbiología , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
20.
Small ; 19(10): e2206052, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36549675

RESUMEN

Precisely controlling the selectivity of nanocatalysts has always been a hot topic in heterogeneous catalysis but remains difficult owing to their complex and inhomogeneous catalytic sites. Herein, an effective strategy to regulate the chemoselectivity of Pd nanocatalysts for selective hydrogenation reactions by inserting single-atom Zn into Pd nanoparticles is reported. Taking advantage of the tannic acid coating-confinement strategy, small-sized Pd nanoparticles with inserted single-atom Zn are obtained on the O-doped carbon-coated alumina. Compared with the pure Pd nanocatalyst, the Pd nanocatalyst with single-atom Zn insertion exhibits prominent selectivity for the hydrogenation of p-iodonitrobenzene to afford the hydrodeiodination product instead of nitro hydrogenation ones. Further computational studies reveal that the single-atom Zn on Pd nanoparticles strengthens the adsorption of the nitro group to avoid its reduction and increases the d-band center of Pd atoms to facilitate the reduction of the iodo group, which leads to enhanced selectivity. This work provides new guidelines to tune the selectivity of nanocatalysts with guest single-atom sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA