Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
1.
Chem Rev ; 123(11): 6891-6952, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37133878

RESUMEN

All forms of energy follow the law of conservation of energy, by which they can be neither created nor destroyed. Light-to-heat conversion as a traditional yet constantly evolving means of converting light into thermal energy has been of enduring appeal to researchers and the public. With the continuous development of advanced nanotechnologies, a variety of photothermal nanomaterials have been endowed with excellent light harvesting and photothermal conversion capabilities for exploring fascinating and prospective applications. Herein we review the latest progresses on photothermal nanomaterials, with a focus on their underlying mechanisms as powerful light-to-heat converters. We present an extensive catalogue of nanostructured photothermal materials, including metallic/semiconductor structures, carbon materials, organic polymers, and two-dimensional materials. The proper material selection and rational structural design for improving the photothermal performance are then discussed. We also provide a representative overview of the latest techniques for probing photothermally generated heat at the nanoscale. We finally review the recent significant developments of photothermal applications and give a brief outlook on the current challenges and future directions of photothermal nanomaterials.

2.
Nano Lett ; 24(20): 5975-5983, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38726841

RESUMEN

In the emerging two-dimensional organic-inorganic hybrid perovskites, the electronic structures and carrier behaviors are strongly impacted by intrinsic electron-phonon interactions, which have received inadequate attention. In this study, we report an intriguing phenomenon of negative carrier diffusion induced by electron-phonon coupling in (2T)2PbI4. Theoretical calculations reveal that the electron-phonon coupling drives the band alignment in (2T)2PbI4 to alternate between type I and type II heterostructures. As a consequence, photoexcited holes undergo transitions between the organic ligands and inorganic layers, resulting in abnormal carrier transport behavior compared to other two-dimensional hybrid perovskites. These findings provide valuable insights into the role of electron-phonon coupling in shaping the band alignments and carrier behaviors in two-dimensional hybrid perovskites. They also open up exciting avenues for designing and fabricating functional semiconductor heterostructures with tailored properties.

3.
Plant Dis ; 108(6): 1670-1681, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38173259

RESUMEN

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a serious threat to wheat (Triticum aestivum L.) production. Narrow genetic basis of common wheat boosted the demand for diversified donors against powdery mildew. Aegilops tauschii Coss (2n = 2x = DD) and emmer wheat (2n = 4x = AABB), as the ancestor species of common wheat, are important gene donors for genetic improvement of common wheat. In this study, a total of 71 Ae. tauschii and 161 emmer wheat accessions were first evaluated for their powdery mildew resistance using the Bgt isolate E09. Thirty-three Ae. tauschii (46.5%) and 108 emmer wheat accessions (67.1%) were resistant. Then, all these accessions were tested by the diagnostic markers for 21 known Pm genes. The results showed that Pm2 alleles were detected in all the 71 Ae. tauschii and only Pm4 alleles were detected in 20 of 161 emmer wheat accessions. After haplotype analysis, we identified four Pm4 alleles (Pm4a, Pm4b, Pm4d, and Pm4f) in the emmer wheat accessions and three Pm2 alleles (Pm2d, Pm2e, and Pm2g) in the Ae. tauschii. Further resistance spectrum analysis indicated that these resistance accessions displayed different resistance reactions to different Bgt isolates, implying they may have other Pm genes apart from Pm2 and/or Pm4 alleles. Notably, a new Pm2 allele, Pm2S, was identified in Ae. tauschii, which contained a 64-bp deletion in the first exon and formed a new termination site at the 513th triplet of the shifted reading frame compared with reported Pm2 alleles. The phylogenetic tree of Pm2S showed that the kinship of Pm2S was close to Pm2h. To efficiently and accurately detect Pm2S and distinguish with other Pm2 alleles in Ae. tauschii background, a diagnostic marker, YTU-QS-3, was developed, and its effectiveness was verified. This study provided valuable Pm alleles and enriched the genetic diversity of the powdery mildew resistance in wheat improvement.


Asunto(s)
Aegilops , Ascomicetos , Resistencia a la Enfermedad , Enfermedades de las Plantas , Triticum , Triticum/genética , Triticum/microbiología , Triticum/inmunología , Ascomicetos/fisiología , Ascomicetos/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Aegilops/genética , Aegilops/microbiología , Genes de Plantas/genética , Alelos , Haplotipos
4.
Plant Dis ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853337

RESUMEN

Wheat (Triticum aestivum L.) is one of the most important crops worldwide. Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is a destructive disease threatening wheat yield and quality. The utilization of resistant genes and cultivars is considered the most economical, environmentally-friendly, and effective method to control powdery mildew. Wheat breeding line Jingzi 102 was highly resistant to powdery mildew at both seedling and adult plant stages. Genetic analysis of F1, F2, and F2:3 populations of "Jingzi 102 × Shixin 828" showed that the resistance of Jingzi 102 against powdery mildew isolate E09 at the seedling stage was controlled by a single dominant gene, temporarily designated PmJZ. Using bulked segregant RNA-Seq combined with molecular markers analysis, PmJZ was located on the long arm of chromosome 2B and flanked by markers BJK695-1 and CIT02g-20 with the genetic distances of 1.2 and 0.5 cM, respectively, corresponding to the bread wheat genome of Chinese Spring (IWGSC RefSeq v2.1) 703.8-707.6 Mb. PmJZ is most likely different from the documented Pm genes on chromosome 2BL based on their physical positions, molecular markers analysis, and resistance spectrum. Based on the gene annotation information, five genes related to disease resistance could be considered as the candidate genes of PmJZ. To accelerate the application of PmJZ, the flanking markers BJK695-1 and CIT02g-20 can serve for marker-assisted selection of PmJZ in wheat disease resistance breeding.

5.
Nano Lett ; 23(15): 6966-6972, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37498293

RESUMEN

Coherent multiwave mixing is in demand for optical frequency conversion, imaging, quantum information science, etc., but has rarely been demonstrated in solid-state systems. Here, we observed three- and five-wave mixing (5WM) in a c-axis growth zinc oxide microwire on a Au film with picosecond pulses in the near-infrared region. An output 5WM of 4.7 × 10-7 µW, only 2-3 orders smaller than the three-wave mixing, is achieved when the excitation power is as low as 1.5 mW and the peak power density as weak as ∼107 W/cm2. The excitation power dependence of 5WM agrees well with the perturbation limit under the low intensity but exhibits a strong deviation at a high pumping power. This extraordinary behavior is attributed to the cooperative resonant enhancement effect when pumping in the near-infrared range. Our study offers a potential solid-state platform for on-chip multiwave mixing and quantum nonlinear optics, such as generating many-photon entangled states or the construction of photon-photon quantum logic gates.

6.
Nano Lett ; 23(2): 444-450, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36595223

RESUMEN

We unambiguously extract the individual decay channels of a coupled plasmon-exciton system by using correlated single-particle absorption and scattering measurements. A remarkable difference in the two channels is present─clear Rabi splitting in the plasmon channel but no Rabi splitting in the exciton channel. Discordance in the absorption and scattering spectra are mainly originated from the distinct contributions of plasmon and exciton channels in the absorption and scattering process. Our findings provide insights into plasmon-exciton interaction in an open cavity and can impact the design of plexcitonic devices for ultrafast nonlinear nanophotonics.

7.
Nano Lett ; 23(23): 11376-11384, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38038244

RESUMEN

Constructing chiral plexcitonic systems with tunable plasmon-exciton coupling may advance the scientific exploitation of strong light-matter interactions. Because of their intriguing chiroptical properties, chiral plasmonic materials have shown promising applications in photonics, sensing, and biomedicine. However, the strong coupling of chiral plasmonic nanoparticles with excitons remains largely unexplored. Here we demonstrate the construction of a chiral plasmon-exciton system using chiral AuAg nanorods and J aggregates for tuning the plexcitonic optical chirality. Circular dichroism spectroscopy was employed to characterize chiral plasmon-exciton coupling, in which Rabi splitting and anticrossing behaviors were observed, whereas the extinction spectra exhibited less prominent phenomena. By controlling the number of molecular excitons and the energy detuning between plasmons and excitons, we have been able to fine-tune the plexcitonic optical chirality. The ability to fine-tune the plexcitonic optical chirality opens up unique opportunities for exploring chiral light-matter interactions and boosting the development of emerging chiroptical devices.

8.
Nano Lett ; 23(20): 9538-9546, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37818838

RESUMEN

Exciton-polaritons are composite quasiparticles that result from the coupling of excitonic transitions and optical modes. They have been extensively studied because of their quantum phenomena and potential applications in unconventional coherent light sources and all-optical control elements. In this work, we report the observation of Bose-Einstein condensation of the upper polariton branch in a transferable WS2 monolayer microcavity. Near the condensation threshold, we observe a nonlinear increase in upper polariton intensity accompanied by a decrease in line width and an increase in temporal coherence, all of which are hallmarks of Bose-Einstein condensation. Simulations show that this condensation occurs within a specific particle density range, depending on the excitonic properties and pumping conditions. The manifestation of upper polariton condensation unlocks new possibilities for studying the condensate competition while linking it to practical realizations in polaritonic lasers. Our findings contribute to the understanding of bosonic systems and offer potential for the development of polaritonic devices.

9.
Nano Lett ; 23(4): 1144-1151, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36749930

RESUMEN

Thermophotovoltaic (TPV) generators provide continuous and high-efficiency power output by utilizing local thermal emitters to convert energy from various sources to thermal radiation matching the bandgaps of photovoltaic cells. Lack of effective guidelines for thermal emission control at high temperatures, poor thermal stability, and limited fabrication scalability are the three key challenges for the practical deployment of TPV devices. Here we develop a hierarchical sequential-learning optimization framework and experimentally realize a 6″ module-scale polaritonic thermal emitter with bandwidth-controlled thermal emission as well as excellent thermal stability at 1473 K. The 300 nm bandwidth thermal emission is realized by a complex photon polariton based on the superposition of Tamm plasmon polariton and surface plasmon polariton. We experimentally achieve a spectral efficiency of 65.6% (wavelength range of 0.4-8 µm) with statistical deviation less than 4% over the 6″ emitter, demonstrating industrial-level reliability for module-scale TPV applications.

10.
Opt Express ; 31(6): 9678-9687, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-37157532

RESUMEN

The near-field enhancement effect in nanoparticles dominates the dynamical response of the atoms and molecules within the nanosystem when interacting with ultrashort laser pulses. In this work, using the single-shot velocity map imaging technique, the angle-resolved momentum distributions of the ionization products from surface molecules in gold nanocubes have been obtained. The far-field momentum distributions of the H+ ions can be linked with the near field profiles demonstrated by a classical simulation considering the initial ionization probability and the Coulomb interactions among the charged particles. This research provides an approach to look at the nanoscale near field distribution in the extreme interactions of femtosecond laser pulses and nanoparticles, paving the way for exploring the complex dynamics.

11.
Phys Rev Lett ; 130(18): 186901, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37204889

RESUMEN

Polarizing electron beams using light is highly desirable but exceedingly challenging, as the approaches proposed in previous studies using free-space light usually require enormous laser intensities. Here, we propose the use of a transverse electric optical near field, extended on nanostructures, to efficiently polarize an adjacent electron beam by exploiting the strong inelastic electron scattering in phase-matched optical near fields. Intriguingly, the two spin components of an unpolarized incident electron beam-parallel and antiparallel to the electric field-are spin-flipped and inelastically scattered to different energy states, providing an analog of the Stern-Gerlach experiment in the energy dimension. Our calculations show that when a dramatically reduced laser intensity of ∼10^{12} W/cm^{2} and a short interaction length of 16 µm are used, an unpolarized incident electron beam interacting with the excited optical near field can produce two spin-polarized electron beams, both exhibiting near unity spin purity and a 6% brightness relative to the input beam. Our findings are important for optical control of free-electron spins, preparation of spin-polarized electron beams, and applications in material science and high-energy physics.

12.
Arch Insect Biochem Physiol ; 114(1): e22030, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37282754

RESUMEN

The antioxidant proteins, peroxiredoxins (Prxs), function to protect insects from reactive oxygen species-induced toxicity. In this study, two Prx genes, CsPrx5, and CsPrx6, were cloned and characterized from the paddy field pest, Chilo suppressalis, containing open reading frames of 570 and 672 bp encoding 189 and 223 amino acid polypeptides, respectively. Then, we investigated the influence of various stresses on their expression levels using quantitative real-time PCR (qRT-PCR). The results showed expression of CsPrx5 and CsPrx6 in all developmental stages, with eggs having the highest level. CsPrx5 and CsPrx6 showed higher expression in the epidermis and fat body, and CsPrx6 also showed higher expression in midgut, fat body, and epidermis. Increasing concentrations of insecticides (chlorantraniliprole and spinetoram) and hydrogen peroxide (H2 O2 ) increased the expression levels of CsPrx5 and CsPrx6. In addition, the expression levels of CsPrx5 and CsPrx6 were almost markedly upregulated in larvae under temperature stress or fed by vetiver. Thus, CsPrx5 and CsPrx6 upregulation might increase the C. suppressalis defense response by reducing the impact of environmental stress, providing a better understanding of the relationship between environmental stresses and insect defense systems.


Asunto(s)
Mariposas Nocturnas , Animales , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Estrés Fisiológico/genética , Larva/genética , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo
13.
Ecotoxicol Environ Saf ; 253: 114658, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36796207

RESUMEN

Pesticide residues have serious environmental impacts on rice-based ecosystems. In rice fields, Chironomus kiiensis and Chironomus javanus provide alternative food sources to predatory natural enemies of rice insect pests, especially when pests are low. Chlorantraniliprole is a substitute for older classes of insecticides and has been used extensively to control rice pests. To determine the ecological risks of chlorantraniliprole in rice fields, we evaluated its toxic effects on certain growth, biochemical and molecular parameters in these two chironomids. The toxicity tests were performed by exposing third-instar larvae to a range of concentrations of chlorantraniliprole. LC50 values at 24 h, 48 h, and 10 days showed that chlorantraniliprole was more toxic to C. javanus than to C. kiiensis. Chlorantraniliprole significantly prolonged the larval growth duration, inhibited pupation and emergence, and decreased egg numbers of C. kiiensis and C. javanus at sublethal dosages (LC10 = 1.50 mg/L and LC25 = 3.00 mg/L for C. kiiensis; LC10 = 0.25 mg/L and LC25 = 0.50 mg/L for C. javanus). Sublethal exposure to chlorantraniliprole significantly decreased the activity of the detoxification enzymes carboxylesterase (CarE) and glutathione S-transferases (GSTs) in both C. kiiensis and C. javanus. Sublethal exposure to chlorantraniliprole also markedly inhibited the activity of the antioxidant enzyme peroxidase (POD) in C. kiiensis and POD and catalase (CAT) in C. javanus. Expression levels of 12 genes revealed that detoxification and antioxidant abilities were affected by sublethal exposures to chlorantraniliprole. There were significant changes in the expression levels of seven genes (CarE6, CYP9AU1, CYP6FV2, GSTo1, GSTs1, GSTd2, and POD) in C. kiiensis and ten genes (CarE6, CYP9AU1, CYP6FV2, GSTo1, GSTs1, GSTd2, GSTu1, GSTu2, CAT, and POD) in C. javanus. These results provide a comprehensive overview of the differences in chlorantraniliprole toxicity to chironomids, indicating that C. javanus is more susceptible and suitable as an indicator for ecological risk assessment in rice ecosystems.


Asunto(s)
Chironomidae , Insecticidas , Animales , Antioxidantes/farmacología , Ecosistema , Larva , ortoaminobenzoatos/toxicidad , Insecticidas/toxicidad
14.
Pestic Biochem Physiol ; 196: 105593, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945243

RESUMEN

The fall armyworm, Spodoptera frugiperda, is a notorious polyphagous pest that causes serious economic losses in crucial crops and has invaded Africa and Asia. Lufenuron is widely used for controlling S. frugiperda in China, owing to its high toxicity against this key pest, and less pollution and little impact on natural enemies. In the present study, the sublethal and transgenerational effects of lufenuron on S. frugiperda were investigated to provide in-depth information for the rational use of lufenuron. Results showed that the development time and pupae weight were not significantly affected following exposure of females to LC10 and LC25 and male S. frugiperda to the LC10 of lufenuron. However, LC25 exposure significantly reduced pupal and total development time and pupae weight of male S. frugiperda. The longevity of S. frugiperda adults was prolonged by lufenuron and the fecundity of S. frugiperda treated with LC10 of lufenuron was significantly increased by 40% compared to the control. In addition, our study demonstrated that the LC25 of lufenuron had transgenerational effects on the progeny generation. The development time of female S. frugiperda whose parents were exposed to LC25 of lufenuron was significantly decreased compared to the control. And then, the expression profiles of Vg, VgR, JHEH, JHE, JHAMT, JHBP, CYP307A1, CYP306A1, CYP302A1 and CYP314A1 genes involved in insect reproduction and development were analyzed using Quantitative Real-Time PCR (RT-qPCR). Results showed that Vg, VgR, JHE, JHAMT, and CYP306A1 were significantly upregulated at the LC10 of lufenuron, which revealed that these upregulated genes might be linked with increased fecundity of S. frugiperda. Taken together, these findings highlighted the importance of sublethal and transgenerational effects under laboratory conditions and these effects may change the population dynamics in the field. Therefore, our study provided valuable information for promoting the rational use of lufenuron for controlling S. frugiperda.


Asunto(s)
Benzamidas , Reproducción , Femenino , Animales , Spodoptera/genética , Fertilidad , Pupa , Larva
15.
Nano Lett ; 22(2): 688-694, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35025516

RESUMEN

On-chip nanoscale optical platforms capable of efficient second harmonic generation (SHG) are highly desired for optical sensing, subwavelength coherent sources, and quantum photonic devices. Here, we develop a remotely excited dual cavity resonance scheme to achieve significantly enhanced SHG in a CdSe nanobelt on Au film hybrid waveguide system. The SHG emission with superior efficiency originates from counter-propagating plasmonic modes interference in a horizontal Fabry-Pérot (FP) cavity enabled by remote excitation of propagating surface plasmons, which is further enhanced through a vertical FP cavity. With this effective cooperation of hybrid plasmon modes and FP cavity modes, 2 orders of magnitude enhancement of the conversion efficiency (3.5 × 10-4 W-1) is achieved compared to the off-resonance case. Our design provides new insight into the development of a multifunctional hybrid plasmonic device toward on-chip nonlinear nanophotonic applications.

16.
Nano Lett ; 22(5): 2023-2029, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35200029

RESUMEN

Whispering gallery modes in a microwire are characterized by a nearly equidistant energy spectrum. In the strong exciton-photon coupling regime, this system represents a bosonic cascade: a ladder of discrete energy levels that sustains stimulated transitions between neighboring steps. Here, by using a femtosecond angle-resolved spectroscopic imaging technique, the ultrafast dynamics of polaritons in a bosonic cascade based on a one-dimensional ZnO whispering gallery microcavity are explicitly visualized. Clear ladder-form build-up processes from higher to lower energy branches of the polariton condensates are observed, which are well reproduced by modeling using rate equations. Remarkably, a pronounced superbunching feature, which could serve as solid evidence for bosonic cascades, is demonstrated by the measured second-order time correlation factor. In addition, the nonlinear polariton parametric scattering dynamics on a time scale of hundreds of femtoseconds are revealed. Our understandings pave the way toward ultrafast coherent control of polaritons at room temperature.

17.
Nano Lett ; 22(4): 1504-1510, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35112876

RESUMEN

Temporal and spectral behaviors of plasmons determine their ability to enhance the characteristics of metamaterials tailored to a wide range of applications, including electric-field enhancement, hot-electron injection, sensing, as well as polarization and angular momentum manipulation. We report a dark-field (DF) polarimetry experiment on single particles with incident circularly polarized light in which gold nanoparticles scatter with opposite handedness at visible wavelengths. Remarkably, for silvered nanoporous silica microparticles, the handedness conversion occurs at longer visible wavelengths, only after adsorption of molecules on the silver. Finite element analysis (FEA) allows matching the circular polarization (CP) conversion to dominant quadrupolar contributions, determined by the specimen size and complex susceptibility. We hypothesize that the damping accompanying the adsorption of molecules on the nanostructured silver facilitates the CP conversion. These results offer new perspectives in molecule sensing and materials tunability for light polarization conversion and control of light spin angular momentum at submicroscopic scale.

18.
Plant Mol Biol ; 109(4-5): 505-522, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34586580

RESUMEN

KEY MESSAGE: Nicotiana benthamiana acylsugar acyltransferase (ASAT) is required for protection against desiccation and insect herbivory. Knockout mutations provide a new resource for investigation of plant-aphid and plant-whitefly interactions. Nicotiana benthamiana is used extensively as a transient expression platform for functional analysis of genes from other species. Acylsugars, which are produced in the trichomes, are a hypothesized cause of the relatively high insect resistance that is observed in N. benthamiana. We characterized the N. benthamiana acylsugar profile, bioinformatically identified two acylsugar acyltransferase genes, ASAT1 and ASAT2, and used CRISPR/Cas9 mutagenesis to produce acylsugar-deficient plants for investigation of insect resistance and foliar water loss. Whereas asat1 mutations reduced accumulation, asat2 mutations caused almost complete depletion of foliar acylsucroses. Three hemipteran and three lepidopteran herbivores survived, gained weight, and/or reproduced significantly better on asat2 mutants than on wildtype N. benthamiana. Both asat1 and asat2 mutations reduced the water content and increased leaf temperature. Our results demonstrate the specific function of two ASAT proteins in N. benthamiana acylsugar biosynthesis, insect resistance, and desiccation tolerance. The improved growth of aphids and whiteflies on asat2 mutants will facilitate the use of N. benthamiana as a transient expression platform for the functional analysis of insect effectors and resistance genes from other plant species. Similarly, the absence of acylsugars in asat2 mutants will enable analysis of acylsugar biosynthesis genes from other Solanaceae by transient expression.


Asunto(s)
Hemípteros , Nicotiana , Aciltransferasas/metabolismo , Animales , Desecación , Herbivoria , Insectos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Agua
19.
Mol Biol Evol ; 38(12): 5539-5554, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34515790

RESUMEN

Miniaturization has occurred in many animal lineages, including insects and vertebrates, as a widespread trend during animal evolution. Among Hymenoptera, miniaturization has taken place in some parasitoid wasp lineages independently, and may have contributed to the diversity of species. However, the genomic basis of miniaturization is little understood. Diverged approximately 200 Ma, Telenomus wasps (Platygastroidea) and Trichogramma wasps (Chalcidoidea) have both evolved to a highly reduced body size independently, representing a paradigmatic example of convergent evolution. Here, we report a high-quality chromosomal genome of Telenomus remus, a promising candidate for controlling Spodoptera frugiperda, a notorious pest that has recently caused severe crop damage. The T. remus genome (129 Mb) is characterized by a low density of repetitive sequence and a reduction of intron length, resulting in the shrinkage of genome size. We show that hundreds of genes evolved faster in two miniaturized parasitoids Trichogramma pretiosum and T. remus. Among them, 38 genes exhibit extremely accelerated evolutionary rates in these miniaturized wasps, possessing diverse functions in eye and wing development as well as cell size control. These genes also highlight potential roles in body size regulation. In sum, our analyses uncover a set of genes with accelerated evolutionary rates in Tri. pretiosum and T. remus, which might be responsible for their convergent adaptations to miniaturization, and thus expand our understanding on the evolutionary basis of miniaturization. Additionally, the genome of T. remus represents the first genome resource of superfamily Platygastroidea, and will facilitate future studies of Hymenoptera evolution and pest control.


Asunto(s)
Avispas , Animales , Genómica , Spodoptera , Avispas/genética
20.
BMC Plant Biol ; 22(1): 83, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35196978

RESUMEN

BACKGROUND: Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is an important disease affecting wheat production. Planting resistant cultivars is an effective, safe, and economical method to control the disease. Map construction using next-generation sequencing facilitates gene cloning based on genetic maps and high-throughput gene expression studies. In this study, specific-locus amplified fragment sequencing (SLAF) was used to analyze Huixianhong (female parent), Hongyoumai (male parent) and two bulks (50 homozygous resistant and 50 susceptible F2:3 segregating population derived from Huixianhong × Hongyoumai to determine a candidate gene region for resistance to powdery mildew on the long arm of chromosome 7B in wheat landrace Hongyoumai. Gene expressions of candidate regions were obtained using bulked segregant RNA-seq in 10 homozygous resistant and 10 susceptible progeny inoculated by Bgt.. Candidate genes were obtained using homology-based cloning in two parents. RESULTS: A 12.95 Mb long candidate region in chromosome 7BL was identified, and five blocks in SLAF matched the scaffold of the existing co-segregation marker Xmp1207. In the candidate region, 39 differentially expressed genes were identified using RNA-seq, including RGA4 (Wheat_Chr_Trans_newGene_16173)-a disease resistance protein whose expression was upregulated in the resistant pool at 16 h post inoculation with Bgt. Quantitative reverse transcription (qRT)-PCR was used to further verify the expression patterns in Wheat_Chr_Trans_newGene_16173 that were significantly different in the two parents Hongyoumai and Huixianhong. Two RGA4 genes were cloned based on the sequence of Wheat_Chr_Trans_newGene_16173, respectively from two parent and there was one amino acid mutation: S to G in Huixianhong on 510 loci. CONCLUSION: The combination of SLAF and BSR-seq methods identified a candidate region of pmHYM in the chromosome 7BL of wheat landrace cultivar Hongyoumai. Comparative analysis between the scaffold of co-segregating marker Xmp1207 and SLAF-seq showed five matching blocks. qRT-PCR showed that only the resistant gene Wheat_Chr_Trans_newGene_16173 was significantly upregulated in the resistant parent Hongyoumai after inoculation with Bgt, and gene cloning revealed a difference in one amino acid between the two parent genes, indicating it was involved in the resistance response and may be the candidate resistance gene pmHYM.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Triticum/genética , Triticum/microbiología , Ascomicetos/patogenicidad , Cromosomas de las Plantas , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA