Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Indoor Air ; 32(1): e12973, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34888956

RESUMEN

Head orientations directly determine movement directions of exhaled pathogen-laden droplets, while there is a lack of research about the effect of the infected person's head orientations on respiratory disease transmission during close contact. This work experimentally investigated the effect of different head orientations of an infected person (IP) on the bioaerosol deposition on a healthy person (HP) during close contact. Also, the effectiveness of PV flow in reducing bioaerosol deposition on the HP under the IP's different head orientations was investigated. Bacteriophage T3 was employed to represent viruses inside the cough-generated aerosols. The bioaerosol depositions on different locations of the HP's upper body (chest, shoulder, and neck) and face (chin, mucous membranes, cheek, and forehead) were characterized by a cultivation method. Results showed that the IP's different head orientations resulted in significantly different deposition density on the HP. PV flow could reduce the bioaerosol deposition remarkably for most cases investigated. The effectiveness of PV flow in reducing deposition on the HP was significantly affected by the IP's head orientations. Findings suggest that changing head orientations can be a control measure to reduce the bioaerosol deposition. Personalized ventilation can be a potential method to reduce the bioaerosol deposition on the HP.


Asunto(s)
Contaminación del Aire Interior , Tos , Cabeza , Aerosoles y Gotitas Respiratorias , Aerosoles , Contaminación del Aire Interior/análisis , Humanos , Pulmón , Postura , Respiración , Ventilación
2.
Indoor Air ; 31(6): 1913-1925, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34297881

RESUMEN

Respiratory bioaerosol deposition in public transport cabins is critical for risk analysis and control of contact transmission. In this work, we built a two-row four-seat setup and an air duct system to simulate a cabin environment. A thermal manikin on the rear left-hand seat was taken as the infected passenger (IP) and "coughed" three times through a cough generator. The deposited viruses and droplets on nearby seats were measured by a cultivation method and microscope, respectively. The effects of seat backrest and overhead gasper jet were studied. Results showed that the number of deposited virus on the front seat was one order of magnitude higher than that on other seats which only contained droplets smaller than 10 µm in diameter. When the backrest was 15 cm higher than the cough, the deposited number of viruses was reduced to 5% of that with the backrest at the same height with the cough. The gasper jet above the IP with a velocity of 1.5 m/s can reduce the deposited viruses to 4% of that with gasper off. It indicates that both the gasper jet and backrest can work as mitigation measures to block the cough jet and protect the nearby passengers.


Asunto(s)
Contaminación del Aire Interior , Virus , Tos/etiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA