Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 61(40): 16197-16202, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36168991

RESUMEN

We demonstrate a dialytic strategy for the synthesis of congeneric two-dimensional metal-organic framework (2D MOF) nanosheets with a dialysis membrane using 1,4-benzenedicarboxylic acid (BDC), 1,4-naphthalenedicarboxylic acid (NDC), and 9,10-anthracenedicarboxylic acid (ADC) as organic linkers and copper(II) as a metal precursor, respectively. Polyimide (PI) membranes containing these empty 2D MOF nanosheets exhibit distinct molecular sieve effects. Molecular dynamic simulation results reveal that the structures of MOF-polymer interfaces are designable by modifying the MOF interlayer distance and aperture size, which has significant influences on gas permeability and selectivity. As a result, Cu-NDC/PI with the moderate composite interface structure shows superior performance toward H2/CH4 and CO2/CH4 separations with a selectivity of 199 and 63 over Cu-BDC (121 and 53) and Cu-ADC (135 and 54), respectively.

2.
J Colloid Interface Sci ; 640: 588-599, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36878076

RESUMEN

Decorating active catalysts on the reactive electrochemical membrane (REM) is an effective way to further improve its decontamination performance. In this work, a novel carbon electrochemical membrane (FCM-30) was prepared through coating FeOOH nano catalyst on a low-cost coal-based carbon membrane (CM) through facile and green electrochemical deposition. Structural characterizations demonstrated that the FeOOH catalyst was successfully coated on CM, and it grew into a flower cluster-like morphology with abundant active sites when the deposition time was 30 min. The nano FeOOH flower clusters can obviously boost the hydrophilicity and electrochemical performance of FCM-30, which enhance its permeability and bisphenol A (BPA) removal efficiency during the electrochemical treatment. Effects of applied voltages, flow rates, electrolyte concentrations and water matrixes on BPA removal efficiency were investigated systematically. Under the operation condition of 2.0 V applied voltage and 2.0 mL·min-1 flow rate, FCM-30 can achieve the high removal efficiency of 93.24% and 82.71% for BPA and chemical oxygen demand (COD) (71.01% and 54.89% for CM), respectively, with only a low energy consumption (EC) of 0.41 kWh·kgCOD-1, which can be ascribed to the enhancement on OH yield and direct oxidation ability by the FeOOH catalyst. Moreover, this treatment system also exhibits good reusability and can be adopted on different water background as well as different pollutants.

3.
J Colloid Interface Sci ; 650(Pt B): 1052-1063, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37459729

RESUMEN

Herein, a novel CuO catalyst functionalized Ti-based catalytic membrane (FCTM) was prepared via the regulated electro-deposition technique followed with low-temperature calcination. The morphology of CuO catalyst and oxygen vacancy (OV) content can be controlled by adjusting the preparation conditions, under optimal condition (400 °C, electrolyte as sulfuric acid), the fern-shaped CuO catalyst was formed and the OV content was up to its highest level. Under the optimal treatment condition, the 4-chlorophenol (4-CP) removal of the membrane filtration combined with peroxymonosulfate (PMS) activation (MFPA) process was up to 98.2% (TOC removal of 88.2%). Mechanism studying showed that the enhanced performance in this system was mainly due to the increased production of singlet oxygen (1O2) via the co-effect of fern-shaped CuO (increased specific surface area) and its fine-tuned OV (precursor of 1O2), which not only synergistically enhanced adsorption ability but also offered more active sites for PMS activation. Theoretical calculations showed that the OV-rich CuO displayed high adsorption energy for PMS molecule, leading to the change in OO and OH bond (tend to 1O2) of the PMS molecule. Finally, the possible three degradation pathways of 4-CP were formed by the electrophilic attacking of 1O2.

4.
J Colloid Interface Sci ; 626: 283-295, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35797870

RESUMEN

Electrocatalytic filtration process adopting the electrocatalytic membrane as both filtration membrane and active electrode showed great prospect on the organic pollutant removal from water. In this work, a high-performance metal-free polypyrrole (PPy) coated carbon-based electrocatalytic membrane (PPy@CCM) was developed through the facile and controllable electro-polymerization deposition method. Structural properties and electrochemical performance of the prepared PPy@CCM were characterized systematically. The influences of preparation parameters and operational parameters on water treatment performance of PPy@CCM were also investigated. Results indicates that the spherical PPy particles uniformly distributed on the surface of PPy@CCM. Coating with PPy particles can significantly improve the hydrophilicity and electrochemical activity of CCM, therefore PPy@CCM has lower hydraulic resistance and higher water treatment performance than CCM. The phenol and chemical oxygen demand (COD) removal rates obtained by PPy@CCM are up to 99.51% and 89.90%, respectively, under the optimal condition of 2.0 V cell potential, 2.50 g·L-1 Na2SO4, 1.5 ml·min-1 flow rate and 50 mg·L-1 phenol, and only 0.5 kWh·kgCOD-1 energy consumption is consumed. In addition, PPy@CCM also exhibits good treatment performance in different water matrixes. Moreover, PPy@CCM has good stability for several cycle operation and considerable applicability for different types of organic pollutants removal. The oxidation mechanism study reveals that PPy@CCM has both direct and indirect oxidation activity during the electrocatalytic filtration treatment, and the coating of PPy can improve the direct oxidation ability and ·OH yield of CCM.


Asunto(s)
Polímeros , Pirroles , Carbono , Fenoles , Polímeros/química , Pirroles/química
5.
Environ Monit Assess ; 157(1-4): 459-69, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18853268

RESUMEN

Vegetation water content could possibly provide widespread utility in agriculture, forestry and hydrology. In this article, three species leaves were measured radiometrically in order to determine a relationship between leaf water status and the spectral feature centered at 1,450 and 1,940 nm where there are strong water absorptions. The first step of our research is to measure leaf spectra with a FieldSpec-FR. After the spectral analysis using the continuum removal technique, the spectral absorption feature parameters: absorption band depth (D (1450), D (1940)), the normalized band depth of absorption in 1,450 and 1,940 nm (BNA(1450), BNA(1940)), the ratio of the two reflectance of continuum line (R (1450i )/R (1940i )), the ratio of the two band depth (D (1450)/D (1940)) and the ratio of the two absorption areas (A (1450)/A (1940)) in the two wavebands were extracted from each leaf spectrum. The fuel moisture content (FMC), specific leaf weight (SLW), equivalent water thickness (EWT) were measured for each leaf sample. A correlation analysis was conducted between the spectral absorption feature parameters and corresponding FMC, SLW and EWT. In addition, some existing indices for assessing water status such as WI (water index), WI/NDVI (water index/normalized difference vegetation index), MSI (moisture stress index), NDWI (normalized difference water index)were calculated and the correlation between them and water status were analyzed too. The results by comparing the correlations indicated that the spectral absorption feature indices we proposed were better. The indexes BNA(1940), D (1450)/D (1940), and A (1450)/A (1940) were well correlated with FMC, and the correlation between the indexes D (1450,) D (1940), R (1450i )/R (1940i ) and EWT were strong. The index A (1450)/A (1940) was tested to be a good indictor for evaluating plant water content, because there was strongest positive correlation between it and FMC than other indices.


Asunto(s)
Plantas/metabolismo , Análisis Espectral , Agua/metabolismo , Absorción , Helechos/metabolismo , Pinus/metabolismo , Hojas de la Planta/metabolismo
6.
Membranes (Basel) ; 8(4)2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30563003

RESUMEN

Carbon molecular sieve (CMS) membranes are novel materials derived from the pyrolysis of the polymeric precursors and have a well-developed ultra-microporous structure that can separate small gas pairs with minor difference in diameter, and thus exhibit higher gas permeability and selectivity than polymeric membranes. However, the gas permeability for traditional pure CMS membranes now cannot satisfy the requirements of commercial applications due to their disordered pore structure and high gas molecular diffusion resistance. Incorporating functional materials into membrane precursors to fabricate hybrid CMS membranes has been regarded as an effective way to tune the disordered pore structure of traditional pure CMS membranes, and thus to greatly improve their gas permeability. Many nanoparticles have been tested as the functional foreign materials to fabricate the hybrid CMS membranes with more developed microporous structure and enhanced gas separation performance. This review discusses the hybridized nanoparticle selection and effect of the species, quantities and particle sizes of the foreign materials on CMS membrane characteristics and performance. The function of the materials incorporated inside the hybrid CMS membranes is also analyzed. It is identified that preparation of hybrid CMS membranes provides a simple and convenient route to efficiently improve the trade-off relationship between permeability and selectivity, and to enable the construction of carbon-based composite materials with novel functionalities in membrane science.

7.
Polymers (Basel) ; 10(5)2018 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-30966573

RESUMEN

Improving the thermal and chemical stabilities of classical polymer membranes will be beneficial to extend their applications in the high temperature or aggressive environment. In this work, the asymmetric ultrafiltration membranes prepared from the polyacrylonitrile (PAN) were used to fabricate the cross-linking asymmetric (CLA) PAN membranes via thermal cross-linking in air to improve their thermal and chemical stabilities. The effects of thermal cross-linking parameters such as temperature and holding time on the structure, gas separation performance, thermal and chemical stabilities of PAN membranes were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), positron annihilation lifetime spectroscopy (PALS), scanning electron microscopy (SEM), thermogravimetic analysis (TGA) and gas permeation test. The thermal cross-linking significantly influences the chemical structure, microstructure and pore structure of PAN membrane. During the thermal cross-linking, the shrinkage of membrane and coalescence or collapse of pore and microstructure make large pores diminish, small pores disappear and pore volumes reduce. The gas permeances of CLA-PAN membranes increase as the increasing of cross-linking temperature and holding time due to the volatilization of small molecules. The CLA-PAN membranes demonstrate excellent thermal and chemical stabilities and present good prospects for application in ultrafiltration for water treatment and for use as a substrate for nanofiltration or gas separation with an aggressive and demanding environment.

8.
J Phys Chem B ; 110(46): 22991-4, 2006 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-17107134

RESUMEN

An approach is presented for the design of photoinduced electron-transfer-based sensors. The approach relies on the computational and theoretical prediction of electron-transfer kinetics based on Rehm-Weller and Marcus theories. The approach allows evaluation of the photophysical behavior of a prototype fluorescent probe/sensor prior to the synthesis of the molecule. As a proof of concept, a prototype sensor for divalent metal ions is evaluated computationally, synthesized, and then analyzed spectroscopically for its fluorescence response to zinc. Calculations predicted that the system would show a competition between electron transfer and fluorescence in the free state. In the zinc-bound state, the compound was predicted to be more highly fluorescent, due to the inhibition of electron transfer. Both predictions were confirmed experimentally. A nonzero fluorescence signal was observed in the absence of zinc and an enhancement was observed in the presence of zinc. Specifically, a 56-fold enhancement was observed over a 10-fold increase in zinc concentration.

9.
J Colloid Interface Sci ; 266(1): 215-8, 2003 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-12957602

RESUMEN

Synthetic approaches that vigorously control the microstructures of water-dispersible gamma-Fe(2)O(3) nanoparticles such as size and size uniformity are of importance to the potential biological applications of these nanomaterials. In the present paper, water-dispersible gamma-Fe(2)O(3) nanocrystals with narrow size distributions (bipy-Fe(2)O(3)) were prepared via a site-exchange reaction. These particular materials are superparamagnetic and stable within a wide range of pH. Introduction of the biotin functionality onto the surfaces of bipy-Fe(2)O(3) enabled the affinity isolation of the protein avidin from its incubation solution magnetically with 96% efficiency.


Asunto(s)
Avidina/aislamiento & purificación , Compuestos Férricos/química , Nanotecnología/métodos , Agua/química , Tamaño de la Partícula
10.
J Colloid Interface Sci ; 258(2): 427-31, 2003 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-12618115

RESUMEN

Highly crystalline gamma-Fe(2)O(3) nanoparticles with narrow size distributions that are coated with 1-undecanesulfonic acid were synthesized via two distinct approaches using oxidation and site-exchange reactions. However, similar nanocrystals protected with 1-octanol could only be achieved via the site-exchange method, while the oxidation approach led to Fe(2)O(3) nanoparticles of poor crystallinity and size uniformity. Our magnetization measurements confirmed the superparamagnetic nature of our Fe(2)O(3) nanoparticle products and the effects of the coating materials on magnetization properties.

11.
Org Lett ; 12(14): 3219-21, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20572677

RESUMEN

A series of structurally similar fluorescent probes (1-4), synthesized from rhodamine B, were designed to optically measure pH. Each probe had a unique "off-on" response as the solution went from basic to acidic. Probes 1-3 exhibited a spirocyclic quenching of the pyronin B fluorophore, whereas probe 4 was quenched by PET from the amine moiety.


Asunto(s)
Diseño de Fármacos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Fenómenos Ópticos , Rodaminas/química , Concentración de Iones de Hidrógeno
12.
Environ Monit Assess ; 142(1-3): 73-83, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17929186

RESUMEN

Nowadays development of industry and traffic are the main contributor to city air pollution in the city of GuangZhou, China. Conventional methods for investigating atmosphere potentially harmful element pollution based on sampling and chemical analysis are time and labor consuming and relatively expensive. Reflectance spectroscopy within the visible-near-infrared region of vegetation in city has been widely used to predict atmosphere constituents due to its rapidity, convenience and accuracy. The objective of this study was to examine the possibility of using leaves reflectance spectra of vegetation as a rapid method to simultaneously assess pollutant (S, Cd, Cu, Hg, Pb, XCl, XF) in the atmosphere of the Guangzhou area. This article has studied the spectral features of polluted leaf surface of Ficus microcarpa in 1985 and 1998. According to the analysis, comprehensive assessment for the change of atmospheric condition and degrees of pollution were given. This conclusion was confirmed by the monitored data got from chemical analysis. Future study with real remote sensing data and field measurements were strongly recommended.


Asunto(s)
Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Ficus/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Espectrofotometría , China , Ciudades , Industrias , Emisiones de Vehículos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA