Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Cell ; 160(6): 1209-21, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25728666

RESUMEN

Rice is sensitive to cold and can be grown only in certain climate zones. Human selection of japonica rice has extended its growth zone to regions with lower temperature, while the molecular basis of this adaptation remains unknown. Here, we identify the quantitative trait locus COLD1 that confers chilling tolerance in japonica rice. Overexpression of COLD1(jap) significantly enhances chilling tolerance, whereas rice lines with deficiency or downregulation of COLD1(jap) are sensitive to cold. COLD1 encodes a regulator of G-protein signaling that localizes on plasma membrane and endoplasmic reticulum (ER). It interacts with the G-protein α subunit to activate the Ca(2+) channel for sensing low temperature and to accelerate G-protein GTPase activity. We further identify that a SNP in COLD1, SNP2, originated from Chinese Oryza rufipogon, is responsible for the ability of COLD(jap/ind) to confer chilling tolerance, supporting the importance of COLD1 in plant adaptation.


Asunto(s)
Proteínas y Péptidos de Choque por Frío/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Cruzamiento , Proteínas y Péptidos de Choque por Frío/genética , Frío , Retículo Endoplásmico , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Mutación , Oryza/citología , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Alineación de Secuencia
2.
EMBO J ; 42(1): e110518, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36341575

RESUMEN

Unusually low temperatures caused by global climate change adversely affect rice production. Sensing cold to trigger signal network is a key base for improvement of chilling tolerance trait.  Here, we report that Oryza sativa Calreticulin 3 (OsCRT3) localized at the endoplasmic reticulum (ER) exhibits conformational changes under cold stress, thereby enhancing its interaction with CBL-interacting protein kinase 7 (OsCIPK7) to sense cold. Phenotypic analyses of OsCRT3 knock-out mutants and transgenic overexpression lines demonstrate that OsCRT3 is a positive regulator in chilling tolerance. OsCRT3 localizes at the ER and mediates increases in cytosolic calcium levels under cold stress. Notably, cold stress triggers secondary structural changes of OsCRT3 and enhances its binding affinity with OsCIPK7, which finally boosts its kinase activity. Moreover, Calcineurin B-like protein 7 (OsCBL7) and OsCBL8 interact with OsCIPK7 specifically on the plasma membrane. Taken together, our results thus identify a cold-sensing mechanism that simultaneously conveys cold-induced protein conformational change, enhances kinase activity, and Ca2+ signal generation to facilitate chilling tolerance in rice.


Asunto(s)
Calreticulina , Oryza , Calreticulina/metabolismo , Oryza/genética , Oryza/metabolismo , Temperatura , Frío , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Mol Cell ; 66(1): 7-8, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28388442

RESUMEN

In this issue of Molecular Cell, Liu et al. (2017) show that the cold-activated plasma membrane protein kinase CRPK1 phosphorylates 14-3-3 proteins, triggering its nuclear translocation to impair the stabilization of the transcription factor CBFs for a feedback excessive cold defense response during the freezing in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Aclimatación , Arabidopsis/genética , Plantas Modificadas Genéticamente
4.
Proc Natl Acad Sci U S A ; 119(15): e2109934119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35394880

RESUMEN

Photoreceptor connecting cilium (CC) is structurally analogous to the transition zone (TZ) of primary cilia and gates the molecular trafficking between the inner and the outer segment (OS). Retinal dystrophies with underlying CC defects are manifested in a broad array of syndromic conditions known as ciliopathies as well as nonsyndromic retinal degenerations. Despite extensive studies, many questions remain in the mechanism of protein trafficking across the photoreceptor CC. Here, we genetically inactivated mouse Tmem138, a gene encoding a putative transmembrane protein localized to the ciliary TZ and linked to ciliopathies. Germline deletion of Tmem138 abolished OS morphogenesis, followed by rapid photoreceptor degeneration. Tmem138 was found localized to the photoreceptor CC and was required for localization of Ahi1 to the distal subdomain of the CC. Among the examined set of OS proteins, rhodopsin was mislocalized throughout the mutant cell body prior to OS morphogenesis. Ablation of Tmem138 in mature rods recapitulated the molecular changes in the germline mutants, causing failure of disc renewal and disintegration of the OS. Furthermore, Tmem138 interacts reciprocally with rhodopsin and a related protein Tmem231, and the ciliary localization of the latter was also altered in the mutant photoreceptors. Taken together, these results suggest a crucial role of Tmem138 in the functional organization of the CC, which is essential for rhodopsin localization and OS biogenesis.


Asunto(s)
Ciliopatías , Degeneración Retiniana , Cilios/metabolismo , Ciliopatías/metabolismo , Humanos , Proteínas de la Membrana , Cilio Conector de los Fotorreceptores , Degeneración Retiniana/metabolismo , Rodopsina/genética , Rodopsina/metabolismo
5.
Exp Eye Res ; 239: 109769, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154732

RESUMEN

Genetic and environmental factors can independently or coordinatively drive ocular axis growth. Mutations in FRIZZLED5 (FZD5) have been associated with microphthalmia, coloboma, and, more recently, high myopia. The molecular mechanism of how Fzd5 participates in ocular growth remains unknown. In this study, we compiled a list of human genes associated with ocular growth abnormalities based on public databases and a literature search. We identified a set of ocular growth-related genes from the list that was altered in the Fzd5 mutant mice by RNAseq analysis at different time points. The Fzd5 regulation of this set of genes appeared to be impacted by age and light damage. Further bioinformatical analysis indicated that these genes are extracellular matrix (ECM)-related; and meanwhile an altered Wnt signaling was detected. Altogether, the data suggest that Fzd5 may regulate ocular growth through regulating ECM remodeling, hinting at a genetic-environmental interaction in gene regulation of ocular axis control.


Asunto(s)
Receptores Frizzled , Microftalmía , Animales , Humanos , Ratones , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Regulación de la Expresión Génica , Vía de Señalización Wnt
6.
Ann Hematol ; 103(2): 533-544, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37950051

RESUMEN

Chronic lymphocytic leukemia (CLL) mainly affects the health of older adults and is difficult to cure. Upstream stimulatory factor 2 (USF2) has been implicated in several diseases and conditions including cancers. However, the effect of USF2 on CLL has not been elucidated. To investigate the effect of USP2 on proliferation and autophagy of CLL, and to explore the underlying mechanism. The mRNA of USF2 and STIP1 homology and U-Box containing protein 1 (STUB1) was analyzed using qRT-PCR. Western blots were used to evaluate the expression level of USF2, LC3II, Beclin-1, P62, STUB1, and NFAT5. The cell proliferation was evaluated using CCK-8 and EdU assays. The cell apoptosis was evaluated using flow cytometry. Indirect fluorescent assay (IFA) was performed to analyze LC3 signal. Nuclear factor of activated T-cells 5 (NFAT5) ubiquitination was detected using immunoprecipitation (IP) assay. The CLL progression was evaluated in xenotransplantation model of nude mice. USF2 was highly expressed in CLL tissues and cell lines. USF2 knockdown suppressed the cell viability and EdU incorporation, while promoting cell apoptosis. Meanwhile, USF2 knockdown reduced the level of LC3II and Beclin-1, but increased P62, illustrating USF2 knockdown inhibiting autophagy. USF2 induced NFAT5 ubiquitination and promoted NFAT5 protein level via repressing STUB1. The downregulation of USF2 weakened CLL progression in xenotransplantation model of nude mice. CLL survival and autophagy was dependent on highly expressed USF2 which promoted the expression and ubiquitination of NFAT5 through inhibiting the transcription of STUB1, which makes USF2 a promising therapeutic candidate for CLL treatment.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Animales , Ratones , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Ratones Desnudos , Beclina-1/genética , Beclina-1/metabolismo , Ubiquitinación , Proliferación Celular/fisiología , Autofagia/genética
7.
Ecotoxicol Environ Saf ; 276: 116301, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599159

RESUMEN

To study the heavy metal accumulation and its impact on insect exterior and chromosome morphology, and reveal the molecular mechanism of insects adapting to long-term heavy metal compound pollution habitats, this study, in the Diaojiang river basin, which has been polluted by heavy metals(HMs) for nearly a thousand years, two Eucriotettix oculatus populations was collected from mining and non-mining areas. It was found that the contents of 7 heavy metals (As, Cd, Pb, Zn, Cu, Sn, Sb) in E. oculatus of the mining area were higher than that in the non-mining 1-11 times. The analysis of morphology shows that the external morphology, the hind wing type and the chromosomal morphology of E. oculatus are significant differences between the two populations. Based on the heavy metal accumulation,morphological change, and stable population density, it is inferred that the mining area population has been affected by heavy metals and has adapted to the environment of heavy metals pollution. Then, by analyzing the transcriptome of the two populations, it was found that the digestion, immunity, excretion, endocrine, nerve, circulation, reproductive and other systems and lysosomes, endoplasmic reticulum and other cell structure-related gene expression were suppressed. This shows that the functions of the above-mentioned related systems of E. oculatus are inhibited by heavy metal stress. However, it has also been found that through the significant up-regulation of genes related to the above system, such as ATP2B, pepsin A, ubiquitin, AQP1, ACOX, ATPeV0A, SEC61A, CANX, ALDH7A1, DLD, aceE, Hsp40, and catalase, etc., and the down-regulation of MAPK signalling pathway genes, can enhanced nutrient absorption, improve energy metabolism, repair damaged cells and degrade abnormal proteins, maintain the stability of cells and systems, and resist heavy metal damage so that E. oculatus can adapt to the environment of heavy metal pollution for a long time.


Asunto(s)
Saltamontes , Metales Pesados , Contaminantes Químicos del Agua , Animales , Metales Pesados/toxicidad , Contaminantes Químicos del Agua/toxicidad , Saltamontes/efectos de los fármacos , Saltamontes/anatomía & histología , Monitoreo del Ambiente/métodos , Minería , China , Adaptación Fisiológica/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Ríos/química
8.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(1): 11-18, 2024 Feb.
Artículo en Zh | MEDLINE | ID: mdl-38433625

RESUMEN

Objective To investigate the effect of staphylococcal nuclease and tudor domain containing 1(SND1) on the biological function of osteosarcoma cells and decipher the mechanism of SND1 in regulating ferroptosis in osteosarcoma cells via SLC7A11. Methods Human osteoblasts hFOB1.19 and osteosarcoma cell lines Saos-2,U2OS,HOS,and 143B were cultured,in which the expression level of SND1 was determined.Small interfering RNA was employed to knock down the expression of SND1(si-SND1) in the osteosarcoma cell line HOS and 143B.The CCK8 assay kit,colony formation assay,and Transwell assay were employed to examine the effect of SND1 expression on the biological function of osteosarcoma cells.Furthermore,we altered the expression of SND1 and SLC7A11 in osteosarcoma cells to investigate the effect of SND1 on osteosarcoma ferroptosis via SLC7A11. Results The mRNA and protein levels of SND1 in Saos-2,U2OS,HOS,and 143B cells were higher than those in hFOB1.19 cells(all P<0.01).Compared with the control group,transfection with si-SND1 down-regulated the expression level of SND1 in HOS and 143B cells(all P<0.01),decreased the viability of HOS and 143B cells,reduced the number of colony formation,and inhibited cell invasion and migration(all P<0.001).The ferroptosis inducer Erastin promoted the apoptosis of HOS and 143B cells,while the ferroptosis inhibitor Ferrostatin-1 improved the viability of HOS and 143B cells(all P<0.001).After SND-1 knockdown,Erastin reduced the viability of HOS and 143B cells,while Ferrostatin-1 restored the cell viability(all P<0.001).After treatment with Erastin in the si-SND1 group,the levels of iron and malondialdehyde were elevated,and the level of glutathione was lowered(all P<0.001).The results of in vivo experiments showed that SND1 knockdown inhibited the mass of the transplanted tumor in 143B tumor-bearing nude mice(P<0.001).Knocking down the expression of SND1 resulted in down-regulated SLC7A11 expression(all P<0.001) and increased ferroptosis in HOS and 143B cells(P<0.001,P=0.020). Conclusions SND1 presents up-regulated expression in osteosarcoma cells.It may inhibit ferroptosis by up-regulating the expression of SLC7A11,thereby improving the viability of osteosarcoma cells.


Asunto(s)
Neoplasias Óseas , Ciclohexilaminas , Eliptocitosis Hereditaria , Ferroptosis , Osteosarcoma , Fenilendiaminas , Animales , Humanos , Ratones , Sistema de Transporte de Aminoácidos y+ , Endonucleasas , Ratones Desnudos , Nucleasa Microcócica , Dominio Tudor
9.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1064-1072, 2024 Feb.
Artículo en Zh | MEDLINE | ID: mdl-38621913

RESUMEN

This article explored the mechanism by which ginsenoside Re reduces hypoxia/reoxygenation(H/R) injury in H9c2 cells by regulating mitochondrial biogenesis through nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)/peroxisome prolife-rator-activated receptor gamma coactivator-1α(PGC-1α) pathway. In this study, H9c2 cells were cultured in hypoxia for 4 hours and then reoxygenated for 2 hours to construct a cardiomyocyte H/R injury model. After ginsenoside Re pre-administration intervention, cell activity, superoxide dismutase(SOD) activity, malondialdehyde(MDA) content, intracellular reactive oxygen species(Cyto-ROS), and intramitochondrial reactive oxygen species(Mito-ROS) levels were detected to evaluate the protective effect of ginsenoside Re on H/R injury of H9c2 cells by resisting oxidative stress. Secondly, fluorescent probes were used to detect changes in mitochondrial membrane potential(ΔΨ_m) and mitochondrial membrane permeability open pore(mPTP), and immunofluorescence was used to detect the expression level of TOM20 to study the protective effect of ginsenoside Re on mitochondria. Western blot was further used to detect the protein expression levels of caspase-3, cleaved caspase-3, Cyto C, Nrf2, HO-1, and PGC-1α to explore the specific mechanism by which ginsenoside Re protected mitochondria against oxidative stress and reduced H/R injury. Compared with the model group, ginse-noside Re effectively reduced the H/R injury oxidative stress response of H9c2 cells, increased SOD activity, reduced MDA content, and decreased Cyto-ROS and Mito-ROS levels in cells. Ginsenoside Re showed a good protective effect on mitochondria by increasing ΔΨ_m, reducing mPTP, and increasing TOM20 expression. Further studies showed that ginsenoside Re promoted the expression of Nrf2, HO-1, and PGC-1α proteins, and reduced the activation of the apoptosis-related regulatory factor caspase-3 to cleaved caspase-3 and the expression of Cyto C protein. In summary, ginsenoside Re can significantly reduce I/R injury in H9c2 cells. The specific mechanism is related to the promotion of mitochondrial biogenesis through the Nrf2/HO-1/PGC-1α pathway, thereby increasing the number of mitochondria, improving mitochondrial function, enhancing the ability of cells to resist oxidative stress, and alleviating cell apoptosis.


Asunto(s)
Ginsenósidos , Factor 2 Relacionado con NF-E2 , Biogénesis de Organelos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Caspasa 3/metabolismo , Transducción de Señal , Estrés Oxidativo , Hipoxia , Miocitos Cardíacos , Apoptosis , Superóxido Dismutasa/metabolismo
10.
Ann Surg Oncol ; 30(13): 8690-8703, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37598115

RESUMEN

BACKGROUND: Osteosarcoma (OS) represents a common type of bone cancer. Long non-coding RNAs (LncRNAs) have shown their potential in therapeutic modalities for OS. This study's purpose was to reveal the action of lncRNA EBLN3P on OS growth and metastasis and its mechanism. METHODS: Expressions of EBLN3P/Hu antigen R (HuR)/Annexin A3 (ANXA3) were determined by RT-qPCR/Western blot. Proliferation/migration/invasion of OS cells were assessed via CCK-8/Transwell assays after interfering EBLN3P/ANXA3/HuR. The co-localization of EBLN3P/ANXA3/HuR cells was observed by FISH/immunofluorescence assays. Interplays among EBLN3P/ANXA3/HuR and the half-life period of ANXA3 were assessed by RNA immunoprecipitation/RNA pull-down/RNA stability experiment. The nude mouse xenograft model was established, followed by EBLN3P treatment to assess the function of EBLN3P on OS. RESULTS: EBLN3P/ANXA3 was highly expressed in OS cells. Silencing EBLN3P or ANXA3 limited the proliferation/migration/invasion of OS cells. Mechanically, EBLN3P/ANXA3 can bind to HuR, and EBLN3P enhanced ANXA3 mRNA stability by recruiting HuR, thus facilitating OS cell growth. Upregulated HuR or ANXA3 counteracted the suppressive action of silencing EBLN3P on OS cells. In vivo experiments revealed facilitated tumor growth and metastasis in vivo fomented by EBLN3P through manipulation of HuR/ANXA3. CONCLUSIONS: EBLN3P enhanced proliferative/migrative/invasive potentials of OS cells via increasing ANXA3 mRNA stability and protein level by recruiting HuR, which provided new potential therapeutic targets for OS clinical treatment. EBLN3P and ANXA3 might have potential roles in OS diagnosis, treatment, and prognosis. This study provided a theoretical reference for further clinical research in tumor surgery.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , ARN Largo no Codificante , Animales , Ratones , Humanos , ARN Largo no Codificante/genética , Línea Celular Tumoral , Anexina A3 , Osteosarcoma/genética , Proliferación Celular/genética , Neoplasias Óseas/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica
11.
J Nanobiotechnology ; 21(1): 344, 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37741962

RESUMEN

Patients with inflammatory bowel disease (IBD) always suffer from severe abdominal pain and appear to be at high risk for colorectal cancer. Recently, the co-delivery of targeted drugs and gut microbiota has developed into an attractive strategy. A new strategy using gut microbiota fermentation to overcome the interspace diffuse resistance from the mucus layer to control drug release in inflammatory bowel sites (IBS sites) has not yet been available. Here, we designed an alginate hydrogel microsphere encapsulating bifidobacterium (Bac) and drug-modified nanoscale dietary fibers (NDFs). The hydrogel microsphere is responsible for protecting drugs from acidic and multi-enzymatic environments and delivering drugs to the colorectum. Subsequently, the fermentation of Bac by digesting NDFs and proteins as carbon and nitrogen sources can promote drug release and play a probiotic role in the gut microbiota. In vitro evidence indicated that small-sized NDF (NDF-1) could significantly promote short-chain fatty acid (SCFA) expression. Notably, NDF-1 hydrogel microspheres showed a boost release of 5-ASA in the IBS sites, resulting in the amelioration of gut inflammation and remodeling of gut microbiota in chronic colitis mice. This study developed a controlled release system based on microbial fermentation for the treatment of IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Síndrome del Colon Irritable , Humanos , Animales , Ratones , Microesferas , Fermentación , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Mesalamina , Alginatos , Fibras de la Dieta
12.
Altern Ther Health Med ; 29(6): 143-149, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37295005

RESUMEN

Objective: The purpose of this retrospective cohort study was to evaluate clinical outcomes in high-risk patients with symptomatic intracranial atherosclerotic stenosis (sICAS) resulting from plaque enhancement who underwent balloon dilation or stent implantation. Plaque features were identified based on high-resolution magnetic resonance vessel wall imaging (HRMR-VWI). Methods: A total of 37 patients with sICAS (degree of stenosis ≥70%) were enrolled between January 2018 and March 2022 at a single center. All patients underwent HRMR-VWI and received standard drug treatment after hospital admission. The patients were divided into 2 groups based on whether they underwent interventional treatment (n = 18) or non-interventional treatment (n = 19). The grade of enhancement and enhancement rate (ER) of culprit plaque were evaluated using 3D-HRMR-VWI. The risk of symptom recurrence was compared between the 2 groups during follow-up. Results: There was no statistical difference between the intervention and non-intervention groups in the rate and type of enhancement. Median clinical follow-up time was 17.8 (10.0 to 26.0) months and median follow-up time was 3.6 (3.1 to 6.2) months. In the intervention group, 2 patients had stent restenosis, but no stroke or transient ischemia attacks (TIAs) occurred. In contrast, 1 patient in the non-intervention group had an ischemic stroke and 4 patients had TIAs. The incidence of the primary outcome was lower in the intervention group than in the non-intervention group (0 vs 26.3%; P = .046). Conclusions: High-resolution magnetic resonance intracranial vessel wall imaging (HR MR-IVWI) can be used to identify vulnerable plaque features. It is safe and effective in high-risk patients with sICAS with responsible plaque enhancement to undergo intravascular intervention combined with standard drug therapy. Further studies are needed to analyze the link between plaque enhancement and symptom recurrence in the medication group at baseline.


Asunto(s)
Arteriosclerosis Intracraneal , Pacientes , Humanos , Constricción Patológica , Estudios Retrospectivos , Arteriosclerosis Intracraneal/diagnóstico por imagen , Arteriosclerosis Intracraneal/tratamiento farmacológico
13.
Nano Lett ; 22(7): 2826-2834, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35344667

RESUMEN

Metal "X" Frameworks (MXFs) constructed from metal ions and biomacromolecules ("X components") via coordination interactions show crystalline structures and diverse functionalities. Here, a series of MXFs composed of various metal ions (e.g., Zn2+, Hf4+, Ca2+) and DNA oligodeoxynucleotides were reported. With MXF consisting of Hf4+ and CpG oligodeoxynucleotides as the example, we show that such Hf-CpG MXF can achieve high-Z elements-enhanced photon radiotherapy and further trigger robust tumor-specific immune responses, thus showing efficient tumor suppression ability. In vivo experiments showed that external beam radiotherapy applied on tumors locally injected with Hf-CpG MXF result in the thorough elimination of primary tumors, complete inhibition of tumor metastasis, and protection against tumor rechallenge by triggering robust antitumor immune responses. Our findings provide a blueprint for fabricating a variety of rationally designed MXFs with desired functions and present the strategy of stimulating whole-body systemic immune responses by only local treatment of radiotherapy.


Asunto(s)
Inmunoterapia , Neoplasias , ADN , Humanos , Inmunidad , Neoplasias/terapia , Oligodesoxirribonucleótidos/farmacología
14.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(5): 773-782, 2023 Oct.
Artículo en Zh | MEDLINE | ID: mdl-37927019

RESUMEN

Objective To explore the cell subsets and characteristics related to the prognosis of osteosarcoma by analyzing the cellular composition of tumor tissue samples from different osteosarcoma patients.Methods The single-cell sequencing data and bulk sequencing data of different osteosarcoma patients were downloaded.We extracted the information of cell samples for dimensionality reduction,annotation,and cell function analysis,so as to identify the cell subsets and clarify the cell characteristics related to the prognosis of osteosarcoma.The development trajectory of macrophages with prognostic significance was analyzed,and the prognostic model of osteosarcoma was established based on the differentially expressed genes of macrophage differentiation.Results The cellular composition presented heterogeneity in the patients with osteosarcoma.The infiltration of mononuclear phagocytes in osteosarcoma had prognostic significance(P=0.003).Four macrophage subsets were associated with prognosis,and their signature transcription factors included RUNX3(+),ETS1(+),HOXD11(+),ZNF281(+),and PRRX1(+).Prog_Macro2 and Prog_Macro4 were located at the end of the developmental trajectory,and the prognostic ability of macrophage subsets increased with the progression of osteosarcoma.The prognostic model established based on the differentially expressed genes involved in macrophage differentiation can distinguish the survival rate of osteosarcoma patients with different risks(P<0.001).Conclusion Macrophage subsets are closely related to the prognosis of osteosarcoma and can be used as the key target cells for the immunotherapy of osteosarcoma.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Pronóstico , Osteosarcoma/genética , Inmunoterapia , Macrófagos , Factores de Transcripción , Neoplasias Óseas/genética , Proteínas de Homeodominio , Proteínas Represoras
15.
EMBO J ; 37(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30150325

RESUMEN

Post-translational modification of proteins by O-linked ß-N-acetylglucosamine (O-GlcNAc) is catalyzed by O-GlcNAc transferases (OGTs). O-GlcNAc modification of proteins regulates multiple important biological processes in metazoans. However, whether protein O-GlcNAcylation is involved in epigenetic processes during plant development is largely unknown. Here, we show that loss of function of SECRET AGENT (SEC), an OGT in Arabidopsis, leads to an early flowering phenotype. This results from reduced histone H3 lysine 4 trimethylation (H3K4me3) of FLOWERING LOCUS C (FLC) locus, which encodes a key negative regulator of flowering. SEC activates ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1), a histone lysine methyltransferase (HKMT), through O-GlcNAc modification to augment ATX1-mediated H3K4me3 histone modification at FLC locus. SEC transfers an O-GlcNAc group on Ser947 of ATX1, which resides in the SET domain, thereby activating ATX1. Taken together, these results uncover a novel post-translational O-GlcNAc modification-mediated mechanism for regulation of HKMT activity and establish the function of O-GlcNAc signaling in epigenetic processes in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Glicosilación , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina , Histonas/genética , Histonas/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Metilación , N-Acetilglucosaminiltransferasas/genética , Procesamiento Proteico-Postraduccional , Factores de Transcripción/genética
16.
J Virol ; 95(6)2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33328314

RESUMEN

Type I interferon (IFN)-mediated antiviral responses are critical for modulating host-virus responses, and indeed, viruses have evolved strategies to antagonize this pathway. Encephalomyocarditis virus (EMCV) is an important zoonotic pathogen, which causes myocarditis, encephalitis, neurological disease, reproductive disorders, and diabetes in pigs. This study aims to understand how EMCV interacts with the IFN pathway. EMCV circumvents the type I IFN response by expressing proteins that antagonize cellular innate immunity. Here, we show that EMCV VP2 is a negative regulator of the IFN-ß pathway. This occurs via the degradation of the MDA5-mediated cytoplasmic double-stranded RNA (dsRNA) antiviral sensing RIG-I-like receptor (RLR) pathway. We show that structural protein VP2 of EMCV interacts with MDA5, MAVS, and TBK1 through its C terminus. In addition, we found that EMCV VP2 could significantly degrade RLRs by the proteasomal and lysosomal pathways. For the first time, EMCV VP2 was shown to play an important role in EMCV evasion of the type I IFN signaling pathway. This study expands our understanding that EMCV utilizes its capsid protein VP2 to evade the host antiviral response.IMPORTANCE Encephalomyocarditis virus is an important pathogen that can cause encephalitis, myocarditis, neurological diseases, and reproductive disorders. It also causes huge economic losses for the swine industry worldwide. Innate immunity plays an important role in defending the host from pathogen infection. Understanding pathogen microorganisms evading the host immune system is of great importance. Currently, whether EMCV evades cytosolic RNA sensing and signaling is still poorly understood. In the present study, we found that viral protein VP2 antagonized the RLR signaling pathway by degrading MDA5, MAVS, and TBK1 protein expression to facilitate viral replication in HEK293 cells. The findings in this study identify a new mechanism for EMCV evading the host's innate immune response, which provide new insights into the virus-host interaction and help develop new antiviral approaches against EMCV.


Asunto(s)
Proteínas de la Cápside/metabolismo , Virus de la Encefalomiocarditis/fisiología , Interferón beta/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Infecciones por Cardiovirus/inmunología , Infecciones por Cardiovirus/virología , Proteína 58 DEAD Box/antagonistas & inhibidores , Proteína 58 DEAD Box/metabolismo , Virus de la Encefalomiocarditis/genética , Virus de la Encefalomiocarditis/metabolismo , Células HEK293 , Humanos , Evasión Inmune , Inmunidad Innata , Interferón Tipo I/metabolismo , Helicasa Inducida por Interferón IFIH1/metabolismo , Mutación , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/metabolismo , Replicación Viral
18.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2652-2657, 2022 May.
Artículo en Zh | MEDLINE | ID: mdl-35718483

RESUMEN

This study determined the extraction rates of indirubin in Indigo Naturalis by ethanol reflux extraction method and water extraction method. The pharmacodynamic study against cough induced by ammonia water in the mouse model and the cough induced by citric acid in the guinea pig model were performed to optimize the extraction process of the sovereign medicinal Indigo Naturalis and the whole prescription of Children's Qingfei Zhisou Syrup. The extraction rate of indirubin by the ethanol reflux method was 51.89%, and indirubin was not detected in the product of water extraction. Two samples of Children's Qingfei Zhisou Syrup prepared with different methods can prolong the incubation period of cough and suppress the frequency of coughs in pharmacodynamic experiments. In terms of prolonging the incubation period of cough, the two samples prepared with different methods had no significant difference. In terms of reducing the frequency of coughs, the high-dose Five kinds of ethanol extracts such as indigo naturalis and three kinds of water extracts such as gypsum had better effect against the citric acid-induced cough of guinea pigs than other samples(P<0.05). The extraction rate of indirubin in Children's Qingfei Zhisou Syrup sample prepared with ethanol was higher than that with water. The two samples of Children's Qingfei Zhisou Syrup prepared with the two methods showed good antitussive effects. The sample prepared with 5 ingredients(including Indigo Naturalis) extracted with ethanol and 3 ingredients(including Gypsum Fibrosum) extracted with water had better alleviation effect on the citric acid-induced cough of guinea pig than the whole water extract sample. In conclusion, the optimum extraction scheme is ethanol extraction for 5 ingredients including Indigo Naturalis in combination with water extraction for 3 ingredients including Gypsum Fibrosum, and the Children's Qingfei Zhisou Syrup produced in this manner has better antitussive efficacy.


Asunto(s)
Antitusígenos , Indigofera , Animales , Antitusígenos/farmacología , Sulfato de Calcio , Ácido Cítrico , Tos/inducido químicamente , Tos/tratamiento farmacológico , Etanol , Cobayas , Humanos , Carmin de Índigo , Ratones , Agua
19.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4707-4714, 2022 Sep.
Artículo en Zh | MEDLINE | ID: mdl-36164878

RESUMEN

This study aims to explore the effect of Jinzhen Oral Liquid(JOL) on cough after infection in rats and the mechanism. To be specific, a total of 60 male SD rats were classified into 6 groups: normal group(equivalent volume of distilled water, ig), model group(equivalent volume of distilled water, ig), Dextromethorphan Hydrobromide Oral Solution group(3.67 mL·kg~(-1), ig), high-, medium-, and low-dose JOL groups(11.34, 5.67, and 2.84 mL·kg~(-1), respectively, ig). Lipopolysaccharide(LPS, nasal drip), smoking, and capsaicin(nebulization) were employed to induce cough after infection in rats except the normal group. Administration began on the 19 th day and lasted 7 days. Capsaicin(nebulization) was used to stimulate cough 1 h after the last administration and the cough frequency and cough incubation period in rats were recorded. The pathological morphology of lung tissue was observed based on hematoxylin-eosin(HE) staining. Immunohistochemistry(IHC) was used to detect the specific expression of transient receptor potential vanilloid 1(Trpv1), nerve growth factor(NGF), tropomyosin receptor kinase A(TrkA), and phosphorylated-p38 mitogen-activated protein kinase(p-p38 MAPK) in lung tissue, Western blot the protein expression of Trpv1, NGF, TrkA, and p-p38 MAPK in lung tissue, and real-time fluorescent quantitative polymerase chain reaction(real-time PCR) the mRNA expression of Trpv1, NGF, and TrkA. The results showed that model group demonstrated significantly high cough frequency, obvious proliferation and inflammatory cell infiltration in lung tissue, significantly enhanced positive protein expression of Trpv1, NGF, TrkA, and p-p38 MAPK in lung tissue and significant increase in the mRNA expression of Trpv1, NGF, and TrkA compared with the normal group. Compared with the model group, JOL can significantly reduce the cough frequency, alleviate the pathological changes of lung tissue, and decrease the protein expression of Trpv1, NGF, TrkA, and p-p38 MAPK in lung tissue, and high-dose and medium-dose JOL can significantly lower the mRNA expression of Trpv1, NGF, and TrkA. This study revealed that JOL can effectively inhibit Trpv1 pathway-related proteins and improve cough after infection. The mechanism is that it reduces the expression of NGF, TrkA, and p-p38 MAPK in lung tissue, thereby decreasing the expression of Trpv1 and cough sensitivity.


Asunto(s)
Tos , Medicina Tradicional China , Factor de Crecimiento Nervioso , Receptor trkA , Animales , Capsaicina/efectos adversos , Tos/inducido químicamente , Tos/tratamiento farmacológico , Dextrometorfano/efectos adversos , Eosina Amarillenta-(YS)/efectos adversos , Hematoxilina , Lipopolisacáridos/efectos adversos , Masculino , Factor de Crecimiento Nervioso/metabolismo , ARN Mensajero , Ratas , Ratas Sprague-Dawley , Receptor trkA/genética , Receptor trkA/metabolismo , Canales Catiónicos TRPV/efectos adversos , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Tropomiosina/efectos adversos , Tropomiosina/metabolismo , Agua/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
J Am Chem Soc ; 143(36): 14573-14580, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34464111

RESUMEN

Quantum-size metal clusters with multiple delocalized electrons could support collective plasmon excitation, and thus, theoretically, coupling of plasmons in the few-atom limit might exist between assembled metal clusters, while currently few experimental observations about this phenomenon have been reported. Here we examined the optical absorption of DNA-templated Ag nanoclusters (DNA-AgNCs) assembled through DNA hybridization and found their absorption peaks were sensitive to the assembled distances, which share common characteristics with classical plasmon coupling. Dipolar charge distribution, multiple transition contributed optical absorption, and strongly enhanced electric field simulated by time-dependent density functional theory (TDDFT) indicated the origin of the absorption of individual DNA-AgNCs is a plasmon. The consistency of the peak-shifting trend between experimental and simulation results for assembled DNA-AgNCs suggested the possible presence of plasmon coupling. Our data imply the possibility for quantum-size structures to support plasmon coupling and also show that DNA-AgNCs possess the potential to be promising materials for construction of plasmon-coupling devices with ultrasmall size, site-specific and stoichiometric binding abilities, and biocompatibility.


Asunto(s)
ADN/química , Nanopartículas del Metal/química , ADN/genética , Electrones , Luz , Nanopartículas del Metal/efectos de la radiación , Hibridación de Ácido Nucleico , Plata/química , Plata/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA