Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Cell ; 160(6): 1209-21, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25728666

RESUMEN

Rice is sensitive to cold and can be grown only in certain climate zones. Human selection of japonica rice has extended its growth zone to regions with lower temperature, while the molecular basis of this adaptation remains unknown. Here, we identify the quantitative trait locus COLD1 that confers chilling tolerance in japonica rice. Overexpression of COLD1(jap) significantly enhances chilling tolerance, whereas rice lines with deficiency or downregulation of COLD1(jap) are sensitive to cold. COLD1 encodes a regulator of G-protein signaling that localizes on plasma membrane and endoplasmic reticulum (ER). It interacts with the G-protein α subunit to activate the Ca(2+) channel for sensing low temperature and to accelerate G-protein GTPase activity. We further identify that a SNP in COLD1, SNP2, originated from Chinese Oryza rufipogon, is responsible for the ability of COLD(jap/ind) to confer chilling tolerance, supporting the importance of COLD1 in plant adaptation.


Asunto(s)
Proteínas y Péptidos de Choque por Frío/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Cruzamiento , Proteínas y Péptidos de Choque por Frío/genética , Frío , Retículo Endoplásmico , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Mutación , Oryza/citología , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Alineación de Secuencia
2.
EMBO J ; 42(1): e110518, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36341575

RESUMEN

Unusually low temperatures caused by global climate change adversely affect rice production. Sensing cold to trigger signal network is a key base for improvement of chilling tolerance trait.  Here, we report that Oryza sativa Calreticulin 3 (OsCRT3) localized at the endoplasmic reticulum (ER) exhibits conformational changes under cold stress, thereby enhancing its interaction with CBL-interacting protein kinase 7 (OsCIPK7) to sense cold. Phenotypic analyses of OsCRT3 knock-out mutants and transgenic overexpression lines demonstrate that OsCRT3 is a positive regulator in chilling tolerance. OsCRT3 localizes at the ER and mediates increases in cytosolic calcium levels under cold stress. Notably, cold stress triggers secondary structural changes of OsCRT3 and enhances its binding affinity with OsCIPK7, which finally boosts its kinase activity. Moreover, Calcineurin B-like protein 7 (OsCBL7) and OsCBL8 interact with OsCIPK7 specifically on the plasma membrane. Taken together, our results thus identify a cold-sensing mechanism that simultaneously conveys cold-induced protein conformational change, enhances kinase activity, and Ca2+ signal generation to facilitate chilling tolerance in rice.


Asunto(s)
Calreticulina , Oryza , Calreticulina/metabolismo , Oryza/genética , Oryza/metabolismo , Temperatura , Frío , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
New Phytol ; 241(5): 2143-2157, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38173177

RESUMEN

The chilling stress induced by the global climate change harms rice production, especially at seedling and booting stage, which feed half the population of the world. Although there are key quantitative trait locus genes identified in the individual stage, few genes have been reported and functioned at both stages. Utilizing chromosome segment substitution lines (CSSLs) and a combination of map-based cloning and phenotypes of the mutants and overexpression lines, we identified the major gene Chilling-tolerance in Geng/japonica rice 3 (COG3) of q chilling-tolerance at the booting and seedling stage 11 (qCTBS11) conferred chilling tolerance at both seedling and booting stages. COG3 was significantly upregulated in Nipponbare under chilling treatment compared with its expression in 93-11. The loss-of-function mutants cog3 showed a reduced chilling tolerance. On the contrary, overexpression enhanced chilling tolerance. Genome evolution and genetic analysis suggested that COG3 may have undergone strong selection in temperate japonica during domestication. COG3, a putative calmodulin-binding protein, physically interacted with OsFtsH2 at chloroplast. In cog3-1, OsFtsH2-mediated D1 degradation was impaired under chilling treatment compared with wild-type. Our results suggest that COG3 is necessary for maintaining OsFtsH2 protease activity to regulate chilling tolerance at the booting and seedling stage.


Asunto(s)
Oryza , Oryza/genética , Sitios de Carácter Cuantitativo , Fenotipo , Genes de Plantas , Plantones/genética , Frío
4.
J Exp Bot ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490694

RESUMEN

Chilling stress caused by extreme weather is threatening global rice (Oryza sativa L.) production. Identifying components of the signal transduction pathways underlying chilling tolerance in rice would advance molecular breeding. Here, we report that OsMST6, which encodes a monosaccharide transporter, positively regulates the chilling tolerance of rice seedlings. The mst6 mutants showed hypersensitivity to chilling, while the OsMST6 overexpression lines were tolerant. During chilling stress, OsMST6 transported more glucose into cells to modulate sugar and ABA signal pathways. We showed that the transcription factor OsERF120 could bind to the DRE/CRT element of the OsMST6 promoter and activate the expression of OsMST6 to positively regulate chilling tolerance. Genetically, OsERF120 was functionally dependent on OsMST6 when promoting chilling tolerance. In summary, OsERF120 and OsMST6 form a new downstream chilling regulatory pathway in rice in response to chilling stress, providing valuable findings for molecular breeding aimed at achieving global food security.

5.
Plant J ; 111(5): 1283-1295, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35765221

RESUMEN

Pollen exine is composed of finely-organized nexine, bacula and tectum, and is crucial for pollen viability and function. Pollen exine development involves a complicated molecular network that coordinates the interaction between pollen and tapetal cells, as well as the biosynthesis, transport and assembly of sporopollenin precursors; however, our understanding of this network is very limited. Here, we report the roles of PEM1, a member of methyl-CpG-binding domain family, in rice pollen development. PEM1 expressed constitutively and, in anthers, its expression was detectable in tapetal cells and pollen. This predicted PEM1 protein of 240 kDa had multiple epigenetic-related domains. pem1 mutants exhibited abnormal Ubisch bodies, delayed exine occurrence and, finally, defective exine, including invisible bacula, amorphous and thickened nexine and tectum layer structures, and also had the phenotype of increased anther cuticle. The mutation in PEM1 did not affect the timely degradation of tapetum. Lipidomics revealed much higher wax and cutin contents in mutant anthers than in wild-type. Accordingly, this mutation up-regulated the expression of a set of genes implicated in transcriptional repression, signaling and diverse metabolic pathways. These results indicate that PEM1 mediates Ubisch body formation and pollen exine development mainly by negatively modulating the expression of genes. Thus, the PEM1-mediated molecular network represents a route for insights into mechanisms underlying pollen development. PEM1 may be a master regulator of pollen exine development.


Asunto(s)
Oryza , Familia , Regulación de la Expresión Génica de las Plantas , Mutación , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/metabolismo
6.
Theor Appl Genet ; 136(1): 19, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36680595

RESUMEN

KEY MESSAGE: Chilling-tolerant QTL gene COG2 encoded an extensin and repressed chilling tolerance by affecting the compositions of cell wall. Rice as a major crop is susceptible to chilling stress. Chilling tolerance is a complex trait controlled by multiple quantitative trait loci (QTLs). Here, we identify a QTL gene, COG2, that negatively regulates cold tolerance at seedling stage in rice. COG2 overexpression transgenic plants are sensitive to cold, whereas knockout transgenic lines enhance chilling tolerance. Natural variation analysis shows that Hap1 is a specific haplotype in japonica/Geng rice and correlates with chilling tolerance. The SNP1 in COG2 promoter is a specific divergency and leads to the difference in the expression level of COG2 between japonica/Geng and indica/Xian cultivars. COG2 encodes a cell wall-localized extensin and affects the compositions of cell wall, including pectin and cellulose, to defense the chilling stress. The results extend the understanding of the adaptation to the environment and provide an editing target for molecular design breeding of cold tolerance in rice.


Asunto(s)
Oryza , Oryza/metabolismo , Sitios de Carácter Cuantitativo , Genes de Plantas , Haplotipos , Pared Celular , Frío
7.
EMBO J ; 37(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30150325

RESUMEN

Post-translational modification of proteins by O-linked ß-N-acetylglucosamine (O-GlcNAc) is catalyzed by O-GlcNAc transferases (OGTs). O-GlcNAc modification of proteins regulates multiple important biological processes in metazoans. However, whether protein O-GlcNAcylation is involved in epigenetic processes during plant development is largely unknown. Here, we show that loss of function of SECRET AGENT (SEC), an OGT in Arabidopsis, leads to an early flowering phenotype. This results from reduced histone H3 lysine 4 trimethylation (H3K4me3) of FLOWERING LOCUS C (FLC) locus, which encodes a key negative regulator of flowering. SEC activates ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1), a histone lysine methyltransferase (HKMT), through O-GlcNAc modification to augment ATX1-mediated H3K4me3 histone modification at FLC locus. SEC transfers an O-GlcNAc group on Ser947 of ATX1, which resides in the SET domain, thereby activating ATX1. Taken together, these results uncover a novel post-translational O-GlcNAc modification-mediated mechanism for regulation of HKMT activity and establish the function of O-GlcNAc signaling in epigenetic processes in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Glicosilación , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina , Histonas/genética , Histonas/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Metilación , N-Acetilglucosaminiltransferasas/genética , Procesamiento Proteico-Postraduccional , Factores de Transcripción/genética
8.
Proc Natl Acad Sci U S A ; 116(32): 15967-15972, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31341087

RESUMEN

The organization of microtubules into a bipolar spindle is essential for chromosome segregation. Both centrosome and chromatin-dependent spindle assembly mechanisms are well studied in mouse, Drosophila melanogaster, and Xenopus oocytes; however, the mechanism of bipolar spindle assembly in plant meiosis remains elusive. According to our observations of microtubule assembly in Oryza sativa, Zea mays, Arabidopsis thaliana, and Solanum lycopersicum, we propose that a key step of plant bipolar spindle assembly is the correction of the multipolar spindle into a bipolar spindle at metaphase I. The multipolar spindles failed to transition into bipolar ones in OsmtopVIB with the defect in double-strand break (DSB) formation. However, bipolar spindles were normally assembled in several other mutants lacking DSB formation, such as Osspo11-1, pair2, and crc1, indicating that bipolar spindle assembly is independent of DSB formation. We further revealed that the mono-orientation of sister kinetochores was prevalent in OsmtopVIB, whereas biorientation of sister kinetochores was frequently observed in Osspo11-1, pair2, and crc1 In addition, mutations of the cohesion subunit OsREC8 resulted in biorientation of sister kinetochores as well as bipolar spindles even in the background of OsmtopVIB Therefore, we propose that biorientation of the kinetochore is required for bipolar spindle assembly in the absence of homologous recombination.


Asunto(s)
Meiosis , Oryza/citología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Huso Acromático/metabolismo , Roturas del ADN de Doble Cadena , Haploidia , Cinetocoros/metabolismo , Modelos Biológicos , Mutación/genética
9.
Plant Cell Environ ; 44(2): 491-505, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33150964

RESUMEN

Improving chilling tolerance is a major target of rice breeding. The OsMAPK3-OsbHLH002-OsTPP1 signalling pathway enhances chilling tolerance in rice: the kinase is activated by cold stress, and subsequently the transcription factor is phosphorylated by the activated kinase, triggering the expression of cold response genes. However, it is largely unknown how this pathway is suppressed in time to avoid it being in a continuously activated state. We found that a novel type 2C protein phosphatase, OsPP2C27, functions as a negative regulator of the OsMAPK3-OsbHLH002-OsTPP1 pathway. A dynamic change in OsMAPK3 activity was found during cold treatment. We show that OsPP2C27 interacts physically with and dephosphorylates OsMAPK3 in vitro and in vivo. Interestingly, OsPP2C27 can also directly dephosphorylate OsbHLH002, the target of OsMAPK3. After cold treatment, survival rates were higher in OsPP2C27-RNAi lines and a T-DNA insertion mutant, and lower in OsPP2C27-overexpression lines, compared to wild type. Moreover, expression of the OsTPP1 and OsDREBs were increased in OsPP2C27-RNAi lines and decreased in OsPP2C27-overexpression lines. These results indicate that cold-induced OsPP2C27 negatively regulates the OsMAPK3-OsbHLH002-OsTPP1 signalling pathway by directly dephosphorylating both phospho-OsMAPK3 and phospho-OsbHLH002, preventing the sustained activation of a positive pathway for cold stress and maintaining normal growth under chilling conditions.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza/fisiología , Proteínas de Plantas/metabolismo , Transpiración de Plantas , Transducción de Señal , Frío , Oryza/anatomía & histología , Oryza/genética , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Proteínas de Plantas/genética , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Estrés Salino , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
New Phytol ; 225(6): 2453-2467, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31736073

RESUMEN

Coordinating stress defense and plant growth is a survival strategy for adaptation to different environments that contains a series of processes, such as, cell growth, division and differentiation. However, little is known about the coordination mechanism for protein conformation change. A cyclophilin OsCYP20-2 with a variant interacts with SLENDER RICE1 (SLR1) and OsFSD2 in the nucleus and chloroplasts, respectively, to integrate chilling tolerance and cell elongation in rice (Oryza sativa) (FSD2, Fe-superoxide dismutase 2). Mass spectrum assay showed that OsNuCYP20-2 localized at the nucleus (nuclear located OsCYP20-2) was a new variant of OsCYP20-2 that truncated 71 amino-acid residues in N-terminal. The loss-of function OsCYP20-2 mutant showed sensitivity to chilling stress with accumulation of extra reactive oxygen species (ROS). In chloroplasts, the full-length OsCYP20-2 promotes OsFSD2 forming homodimers which enhance its activity, eliminating the accumulation of ROS under chilling stress. However, the mutant had shorter epidermal cells in comparison with wild-type Hwayoung (HY). In the nucleus, OsCYP20-2 caused conformation change of SLR1 to promote its degradation for cell elongation. Our data reveal a cyclophilin with a variant with dual-localization in chloroplasts and the nucleus, which mediate chilling tolerance and cell elongation.


Asunto(s)
Adaptación Fisiológica , Frío , Ciclofilinas , Oryza , Proteínas de Plantas , Cloroplastos , Ciclofilinas/genética , Oryza/genética , Proteínas de Plantas/genética
11.
Plant Physiol ; 180(3): 1436-1449, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31061102

RESUMEN

O-GlcNAcylation and phosphorylation are two posttranslational modifications that antagonistically regulate protein function. However, the regulation of and the cross talk between these two protein modifications are poorly understood in plants. Here we investigated the role of O-GlcNAcylation during vernalization, a process whereby prolonged cold exposure promotes flowering in winter wheat (Triticum aestivum), and analyzed the dynamic profile of O-GlcNAcylated and phosphorylated proteins in response to vernalization. Altering O-GlcNAc signaling by chemical inhibitors affected the vernalization response, modifying the expression of VRN genes and subsequently affecting flowering transition. Over a vernalization time-course, O-GlcNAcylated and phosphorylated peptides were enriched from winter wheat plumules by Lectin weak affinity chromatography and iTRAQ-TiO2, respectively. Subsequent mass spectrometry and gene ontology term enrichment analysis identified 168 O-GlcNAcylated proteins that are mainly involved in responses to abiotic stimulus and hormones, metabolic processing, and gene expression; and 124 differentially expressed phosphorylated proteins that participate in translation, transcription, and metabolic processing. Of note, 31 vernalization-associated proteins were identified that carried both phosphorylation and O-GlcNAcylation modifications, of which the majority (97%) exhibited the coexisting module and the remainder exhibited the potential competitive module. Among these, TaGRP2 was decorated with dynamic O-GlcNAcylation (S87) and phosphorylation (S152) modifications, and the mutation of S87 and S152 affected the binding of TaGRP2 to the RIP3 motif of TaVRN1 in vitro. Our data suggest that a dynamic network of O-GlcNAcylation and phosphorylation at key pathway nodes regulate the vernalization response and mediate flowering in wheat.


Asunto(s)
Frío , Flores/metabolismo , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Triticum/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Glicosilación , Fosforilación , Proteínas de Plantas/genética , Estaciones del Año , Triticum/genética , Triticum/crecimiento & desarrollo
12.
Plant Physiol ; 176(1): 946-959, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29180380

RESUMEN

Genetic improvement of plant architecture is one of the strategies for increasing the yield potential of rice (Oryza sativa). Although great progress has been made in the understanding of plant architecture regulation, the precise mechanism is still an urgent need to be revealed. Here, we report that over-expression of OsMIR396d in rice results in semidwarf and increased leaf angle, a typical phenotype of brassinosteroid (BR) enhanced mutant. OsmiR396d is involved in the interaction network of BR and gibberellin (GA) signaling. In OsMIR396d over-expression plants, BR signaling was enhanced. In contrast, both the signaling and biosynthesis of GA were impaired. BRASSINAZOLE-RESISTANT1, a core transcription activator of BR signaling, directly promoted the accumulation of OsmiR396d, which controlled BR response and GA biosynthesis by regulating the expression of different target genes respectively. GROWTH REGULATING FACTOR 6, one of OsmiR396d targets, participated in GA biosynthesis and signal transduction but was not directly involved in BR signaling. This study provides a new insight into the understanding of interaction between BR and GA from multiple levels on controlling plant architecture.


Asunto(s)
Brasinoesteroides/metabolismo , Giberelinas/metabolismo , MicroARNs/metabolismo , Oryza/anatomía & histología , Oryza/metabolismo , Transducción de Señal , Vías Biosintéticas , División Celular , Tamaño de la Célula , MicroARNs/genética , Modelos Biológicos , Mutación/genética , Oryza/citología , Oryza/genética , Hojas de la Planta/anatomía & histología , Hojas de la Planta/ultraestructura , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente
13.
J Integr Plant Biol ; 61(12): 1194-1200, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30912264

RESUMEN

Calcineurin B-like interacting protein kinases (CIPKs) play important roles via environmental stress. However, less is known how to sense the stress in molecular structure conformation level. Here, an OsCIPK7 mutant via TILLING procedure with a point mutation in the kinase domain showed increased chilling tolerance, which could be potentially used in the molecular breeding. We found that this point mutation of OsCIPK7 led to a conformational change in the activation loop of the kinase domain, subsequently with an increase of protein kinase activity, thus conferred an increased tolerance to chilling stress.


Asunto(s)
Frío , Oryza/enzimología , Oryza/fisiología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Mutación Puntual/genética , Proteínas Quinasas/metabolismo , Adaptación Fisiológica , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas de Plantas/metabolismo , Conformación Proteica , Espectroscopía Infrarroja por Transformada de Fourier
14.
New Phytol ; 218(1): 219-231, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29364524

RESUMEN

Plants modify their development to adapt to their environment, protecting themselves from detrimental conditions such as chilling stress by triggering a variety of signaling pathways; however, little is known about how plants coordinate developmental patterns and stress responses at the molecular level. Here, we demonstrate that interacting transcription factors OsMADS57 and OsTB1 directly target the defense gene OsWRKY94 and the organogenesis gene D14 to trade off the functions controlling/moderating rice tolerance to cold. Overexpression of OsMADS57 maintains rice tiller growth under chilling stress. OsMADS57 binds directly to the promoter of OsWRKY94, activating its transcription for the cold stress response, while suppressing its activity under normal temperatures. In addition, OsWRKY94 was directly targeted and suppressed by OsTB1 under both normal and chilling temperatures. However, D14 transcription was directly promoted by OsMADS57 for suppressing tillering under the chilling treatment, whereas D14 was repressed for enhancing tillering under normal condition.We demonstrated that OsMADS57 and OsTB1 conversely affect rice chilling tolerance via targeting OsWRKY94. Our findings highlight a molecular genetic mechanism coordinating organogenesis and chilling tolerance in rice, which supports and extends recent work suggesting that chilling stress environments influence organ differentiation.


Asunto(s)
Adaptación Fisiológica/genética , Frío , Organogénesis/genética , Oryza/genética , Oryza/fisiología , Proteínas de Plantas/metabolismo , Transcripción Genética , Regulación hacia Abajo/genética , Congelación , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Unión Proteica , Estrés Fisiológico/genética , Regulación hacia Arriba/genética
15.
New Phytol ; 211(4): 1295-310, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27198693

RESUMEN

Cold, a major environmental stress for plants, has been studied intensively for decades. Its response system has been revealed, especially at the transcriptional level. The mechanisms underlying recovery growth and environmental adaptation, however, remain unknown. Taking advantage of a naturally existing system, two subspecies of Asian cultivated rice (Oryza sativa) with significant divergence in chilling tolerance, we analyzed representative japonica and indica varieties, Nipponbare and 93-11, using comparative metabolomic analysis at six time points covering chilling treatment and recovery. In total, 223 known metabolites were detected. During chilling treatment, significant biochemical changes were centered on antioxidation. During recovery, a wide-ranging chilling response was observed. Large-scale amino acid accumulation occurred, consistent with the appearance of chilling injury. At the mid-treatment stage, the accumulation of antioxidation-related compounds appeared earlier in Nipponbare than in 93-11, consistent with the higher reactive oxygen species (ROS) levels in japonica vs indica varieties. A significant contribution of ROS-mediated gene regulation, rather than the C-repeat binding factor/dehydration-responsive-element binding factor (CBF/DREB) regulon, to the more vigorous transcriptional stress response in Nipponbare was revealed by RNA-seq. Accordingly, during recovery, the induction of stress-tolerant-related metabolites was more active in the chilling-tolerant variety Nipponbare. Senescence-related compounds accumulated only in the chilling-sensitive variety 93-11. Our study uncovers the dynamic metabolic models underlying chilling response and recovery, and reveals a ROS-dominated rice adaptation mechanism to low-temperature environments.


Asunto(s)
Adaptación Fisiológica , Ambiente , Congelación , Metabolómica/métodos , Modelos Biológicos , Oryza/metabolismo , Oryza/fisiología , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Metaboloma , Oryza/genética , Oryza/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Análisis de Componente Principal , Ácido Salicílico/metabolismo , Análisis de Secuencia de ARN , Estrés Fisiológico/genética , Transcripción Genética
16.
Plant Physiol ; 169(3): 2102-17, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26392261

RESUMEN

Lectins selectively recognize sugars or glycans for defense in living cells, but less is known about their roles in the development process and the functional network with other factors. Here, we show that Arabidopsis (Arabidopsis thaliana) JACALIN-LECTIN LIKE1 (AtJAC1) functions in flowering time control. Loss of function of AtJAC1 leads to precocious flowering, whereas overexpression of AtJAC1 causes delayed flowering. AtJAC1 influences flowering through regulation of the key flowering repressor gene FLOWERING LOCUS C (FLC). Genetic analysis revealed that AtJAC1's function is mostly dependent on GLYCINE-RICH RNA-BINDING PROTEIN7 (GRP7), an upstream regulator of FLC. Biochemical and cell biological data indicated that AtJAC1 interacted physically with GRP7 specifically in the cytoplasm. AtJAC1 influences the nucleocytoplasmic distribution of GRP7, with predominant nuclear localization of GRP7 when AtJAC1 function is lost but retention of GRP7 in the cytoplasm when AtJAC1 is overexpressed. A temporal inducible assay suggested that AtJAC1's regulation of flowering could be compromised by the nuclear accumulation of GRP7. In addition, GRP7 binds to the antisense precursor messenger RNA of FLC through a conserved RNA motif. Loss of GRP7 function leads to the elevation of total FLC antisense transcripts and reduced proximal-distal polyadenylation ratio, as well as histone methylation changes in the FLC gene body region and increased total functional sense FLC transcript. Attenuating the direct binding of GRP7 with competing artificial RNAs leads to changes of FLC antisense precursor messenger RNA processing and flowering transition. Taken together, our study indicates that AtJAC1 coordinates with GRP7 in shaping plant development through the regulation of RNA processing in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Auxilinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo , Proteínas de Dominio MADS/metabolismo , Proteínas de Unión al ARN/metabolismo , Arabidopsis/citología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Auxilinas/genética , Cromatina/genética , Cromatina/metabolismo , Flores/citología , Flores/genética , Flores/fisiología , Expresión Génica , Glicina/metabolismo , Histonas/genética , Proteínas de Dominio MADS/genética , Metilación , Mutagénesis Insercional , Lectinas de Plantas/metabolismo , Poliadenilación , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Factores de Tiempo
17.
Plant Cell ; 25(7): 2504-21, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23897924

RESUMEN

Brassinosteroids (BRs) regulate many physiological processes during plant development, including flowering. However, little is known about the components of BR signaling that mediate flowering. Here, we report that BRASSINAZOLE-RESISTANT1 (BZR1), the conformation of which is altered by a cyclophilin (CYP20-2), binds cis-elements in the FLOWERING LOCUS D (FLD) promoter to regulate flowering. Both bzr1-1D and fld-4 showed delayed flowering. Electrophoretic mobility shift assay and chromatin immunoprecipitation revealed that BZR1 bound to a putative BR response cis-element and suppressed the expression of FLD. Overexpression of FLD partially rescued the late flowering of pBZR1:mBZR1(Pro234-Leu)-CFP (mx3). Yeast two-hybrid and pull-down assays demonstrated that BZR1 interacts with CYP20-2. Arabidopsis thaliana CYP20-2 had greater peptidyl-prolyl cis-trans isomerase activity than did wheat (Triticum aestivum) CYP20-2. Fourier transform infrared spectroscopy revealed conformation changes in BZR1, dependent on interaction with CYP20-2. Due to differences in activity and substrate preference between CYP20-2 proteins from wheat and Arabidopsis, At-CYP20-2-overexpressing lines showed earlier flowering, whereas Ta CYP20-2 lines flowered later. Immunoblot and chromatin immunoprecipitation assays showed that histone H3 trimethyl Lys4 and H3 acetylation levels were negatively correlated with the transcription of FLD (a putative histone demethylase) in various lines. Therefore, a conformational change of BZR1 mediated by CYP20-2 causes altered flowering through modulation of FLD expression.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ciclofilinas/genética , Flores/genética , Histona Desacetilasas/genética , Proteínas de Dominio MADS/genética , Proteínas Nucleares/genética , Regiones Promotoras Genéticas/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Ciclofilinas/química , Ciclofilinas/metabolismo , Proteínas de Unión al ADN , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/metabolismo , Immunoblotting , Proteínas de Dominio MADS/metabolismo , Modelos Moleculares , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Conformación Proteica , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Técnicas del Sistema de Dos Híbridos
18.
Plant Physiol ; 165(1): 160-74, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24596329

RESUMEN

Inflorescence and spikelet development determine grain yields in cereals. Although multiple genes are known to be involved in the regulation of floral organogenesis, the underlying molecular network remains unclear in cereals. Here, we report that the rice (Oryza sativa) microRNA396d (OsmiR396d) and its Os Growth Regulating Factor (OsGRF) targets, together with Os Growth Regulating Factor-Interacting Factor1 (OsGIF1), are involved in the regulation of floral organ development through the rice JMJD2 family jmjC gene 706 (OsJMJ706) and crinkly4 receptor-like kinase (OsCR4). Transgenic knockdown lines of OsGRF6, a predicted target of OsmiR396d, and overexpression lines of OsmiR396d showed similar defects in floral organ development, including open husks, long sterile lemmas, and altered floral organ morphology. These defects were almost completely rescued by overexpression of OsGRF6. OsGRF6 and its ortholog OsGRF10 were the most highly expressed OsGRF family members in young inflorescences, and the grf6/grf10 double mutant displayed abnormal florets. OsGRF6/OsGRF10 localized to the nucleus, and electrophoretic mobility shift assays revealed that both OsGRF6 and OsGRF10 bind the GA response element in the promoters of OsJMJ706 and OsCR4, which were reported to participate in the regulation of floral organ development. In addition, OsGRF6 and OsGRF10 could transactivate OsJMJ706 and OsCR4, an activity that was enhanced in the presence of OsGIF1, which can bind both OsGRF6 and OsGRF10. Together, our results suggest that OsmiR396d regulates the expression of OsGRF genes, which function with OsGIF1 in floret development through targeting of JMJ706 and OsCR4. This work thus reveals a microRNA-mediated regulation module for controlling spikelet development in rice.


Asunto(s)
Flores/crecimiento & desarrollo , Flores/genética , MicroARNs/metabolismo , Organogénesis/genética , Oryza/crecimiento & desarrollo , Oryza/genética , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Genoma de Planta , Hibridación in Situ , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , MicroARNs/genética , Datos de Secuencia Molecular , Mutación , Fenotipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica , Mapeo de Interacción de Proteínas , Transcripción Genética
19.
PLoS Genet ; 8(4): e1002686, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22570626

RESUMEN

Brassinosteroids (BRs) regulate rice plant architecture, including leaf bending, which affects grain yield. Although BR signaling has been investigated in Arabidopsis thaliana, the components negatively regulating this pathway are less well understood. Here, we demonstrate that Oryza sativa LEAF and TILLER ANGLE INCREASED CONTROLLER (LIC) acts as an antagonistic transcription factor of BRASSINAZOLE-RESISTANT 1 (BZR1) to attenuate the BR signaling pathway. The gain-of-function mutant lic-1 and LIC-overexpressing lines showed erect leaves, similar to BZR1-depleted lines, which indicates the opposite roles of LIC and BZR1 in regulating leaf bending. Quantitative PCR revealed LIC transcription rapidly induced by BR treatment. Image analysis and immunoblotting showed that upon BR treatment LIC proteins translocate from the cytoplasm to the nucleus in a phosphorylation-dependent fashion. Phosphorylation assay in vitro revealed LIC phosphorylated by GSK3-like kinases. For negative feedback, LIC bound to the core element CTCGC in the BZR1 promoter on gel-shift and chromatin immunoprecipitation assay and repressed its transcription on transient transformation assay. LIC directly regulated target genes such as INCREASED LEAF INCLINATION 1 (ILI1) to oppose the action of BZR1. Repression of LIC in ILI1 transcription in protoplasts was partially rescued by BZR1. Phenotypic analysis of the crossed lines depleted in both LIC and BZR1 suggested that BZR1 functionally depends on LIC. Molecular and physiology assays revealed that LIC plays a dominant role at high BR levels, whereas BZR1 is dominant at low levels. Thus, LIC regulates rice leaf bending as an antagonistic transcription factor of BZR1. The phenotypes of lic-1 and LIC-overexpressing lines in erect leaves contribute to ideal plant architecture. Improving this phenotype may be a potential approach to molecular breeding for high yield in rice.


Asunto(s)
Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Proteínas de Plantas , Factores de Transcripción , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oryza , Fenotipo , Fosforilación , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Plant Physiol ; 163(4): 1673-85, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24144792

RESUMEN

Leaf senescence is related to the grain-filling rate and grain weight in cereals. Many components involved in senescence regulation at either the genetic or physiological level are known. However, less is known about molecular regulation mechanisms. Here, we report that OsFBK12 (an F-box protein containing a Kelch repeat motif) interacts with S-ADENOSYL-l-METHIONINE SYNTHETASE1 (SAMS1) to regulate leaf senescence and seed size as well as grain number in rice (Oryza sativa). Yeast two-hybrid, pull-down, and bimolecular fluorescence complementation assays indicate that OsFBK12 interacts with Oryza sativa S-PHASE KINASE-ASSOCIATED PROTEIN1-LIKE PROTEIN and with OsSAMS1. Biochemical and physiological data showed that OsFBK12 targets OsSAMS1 for degradation. OsFBK12-RNA interference lines and OsSAMS1 overexpression lines showed increased ethylene levels, while OsFBK12-OX lines and OsSAMS1-RNA interference plants exhibited decreased ethylene. Phenotypically, overexpression of OsFBK12 led to a delay in leaf senescence and germination and increased seed size, whereas knockdown lines of either OsFBK12 or OsSAMS1 promoted the senescence program. Our results suggest that OsFBK12 is involved in the 26S proteasome pathway by interacting with Oryza sativa S-PHASE KINASE-ASSOCIATED PROTEIN1-LIKE PROTEIN and that it targets the substrate OsSAMS1 for degradation, triggering changes in ethylene levels for the regulation of leaf senescence and grain size. These data have potential applications in the molecular breeding of rice.


Asunto(s)
Proteínas F-Box/metabolismo , Pleiotropía Genética , Oryza/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteolisis , Recuento de Células , Núcleo Celular/metabolismo , Tamaño de la Célula , Endospermo/citología , Endospermo/metabolismo , Endospermo/ultraestructura , Proteínas F-Box/genética , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Germinación , Modelos Biológicos , Tamaño de los Órganos/genética , Oryza/genética , Oryza/metabolismo , Oryza/ultraestructura , Fenotipo , Células Vegetales/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica , Semillas/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA