Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Chembiochem ; 24(12): e202300320, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37186077

RESUMEN

There is considerable interest in drug discovery targeting the aggregation of α-synuclein (αSyn) since this molecular process is closely associated with Parkinson's disease. However, inhibiting αSyn aggregation remains a major challenge because of its highly dynamic nature which makes it difficult to form a stable binding complex with a drug molecule. Here, by exploiting Random non-standard Peptides Integrated Discovery (RaPID) system, we identified a macrocyclic peptide, BD1, that could interact with immobilized αSyn and inhibit the formation of fibrils. Furthermore, improving the solubility of BD1 suppresses the co-aggregation with αSyn fibrils while it kinetically inhibits more effectively without change in their morphology. We also revealed the molecular mechanism of kinetic inhibition, where peptides bind to fibril ends of αSyn, thereby preventing further growth of fibrils. These results suggest that our approach for generating non-standard macrocyclic peptides is a promising approach for developing potential therapeutics against neurodegeneration.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Amiloide/química , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Péptidos/farmacología , Cinética
2.
Ann Neurol ; 92(1): 110-121, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35428994

RESUMEN

OBJECTIVE: The motor severity in Parkinson disease (PD) is believed to parallel dopaminergic terminal degeneration in the striatum, although the terminal was reported to be virtually absent by 4 years postdiagnosis. Meanwhile, neuromelanin-laden dopamine neuron loss in the substantia nigra (SN) elucidated a variability at early stages and gradual loss with less variability 10 years postdiagnosis. Here, we aimed to clarify the correlation between motor impairments and striatal dopaminergic terminal degeneration and nigral neuromelanin-laden dopamine neuron loss at early to advanced stages of PD. METHODS: Ninety-three PD patients were divided into early and advanced subgroups based on motor symptom duration and whether motor fluctuation was present. Striatal dopaminergic terminal degeneration was evaluated using a presynaptic dopamine transporter tracer, 123 I-ioflupane single photon emission computed tomography (SPECT). Nigral neuromelanin-laden dopamine neuron density was assessed by neuromelanin-sensitive magnetic resonance imaging (NM-MRI). RESULTS: In patients with early stage PD (motor symptoms for ≤8 or 10 years), motor dysfunction during the drug-off state was paralleled by a decline in 123 I-ioflupane uptake in the striatum despite the absence of a correlation with reductions in NM-MRI signals in SN. Meanwhile, in patients with advanced stage PD (motor symptoms for >8 or 10 years and with fluctuation), the degree of motor deficits during the drug-off state was not correlated with 123 I-ioflupane uptake in the striatum, despite its significant negative correlation with NM-MRI signals in SN. INTERPRETATION: We propose striatal dopaminergic terminal loss measured using 123 I-ioflupane SPECT and nigral dopamine neuron loss assessed with NM-MRI as early stage and advanced stage motor impairment biomarkers, respectively. ANN NEUROL 2022;92:110-121.


Asunto(s)
Enfermedad de Parkinson , Cuerpo Estriado/metabolismo , Dopamina , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Neuronas Dopaminérgicas/patología , Humanos , Imagen por Resonancia Magnética/métodos , Degeneración Nerviosa/diagnóstico por imagen , Degeneración Nerviosa/patología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Sustancia Negra/patología , Tomografía Computarizada de Emisión de Fotón Único/métodos
3.
Mov Disord ; 38(6): 1056-1067, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37066491

RESUMEN

BACKGROUND: The intercellular transmission of pathogenic proteins plays a crucial role in the progression of neurodegenerative diseases. Previous research has shown that the neuronal uptake of such proteins is activity-dependent; however, the detailed mechanisms underlying activity-dependent α-synuclein transmission in Parkinson's disease remain unclear. OBJECTIVE: To examine whether α-synuclein transmission is affected by Ca2+ -calmodulin-calcineurin signaling in cultured cells and mouse models of Parkinson's disease. METHODS: Mouse primary hippocampal neurons were used to examine the effects of the modulation of Ca2+ -calmodulin-calcineurin signaling on the neuronal uptake of α-synuclein preformed fibrils. The effects of modulating Ca2+ -calmodulin-calcineurin signaling on the development of α-synuclein pathology were examined using a mouse model injected with α-synuclein preformed fibrils. RESULTS: Modulation of Ca2+ -calmodulin-calcineurin signaling by inhibiting voltage-gated Ca2+ channels, calmodulin, and calcineurin blocked the neuronal uptake of α-synuclein preformed fibrils via macropinocytosis. Different subtypes of voltage-gated Ca2+ channel differentially contributed to the neuronal uptake of α-synuclein preformed fibrils. In wild-type mice inoculated with α-synuclein preformed fibrils, we found that inhibiting calcineurin ameliorated the development of α-synuclein pathology. CONCLUSION: Our data suggest that Ca2+ -calmodulin-calcineurin signaling modulates α-synuclein transmission and has potential as a therapeutic target for Parkinson's disease. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Humanos , Animales , Ratones , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/patología , Calmodulina/metabolismo , Calcineurina/metabolismo , Neuronas/metabolismo
4.
Mov Disord ; 37(10): 2033-2044, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35989519

RESUMEN

BACKGROUND: Lewy body diseases (LBDs), which are pathologically defined as the presence of intraneuronal α-synuclein (α-Syn) inclusions called Lewy bodies, encompass Parkinson's disease, Parkinson's disease with dementia, and dementia with Lewy bodies. Autopsy studies have shown that the olfactory bulb (OB) is one of the regions where Lewy pathology develops and initiates its spread in the brain. OBJECTIVE: This study aims to clarify how Lewy pathology spreads from the OB and affects brain functions using nonhuman primates. METHODS: We inoculated α-Syn preformed fibrils into the unilateral OBs of common marmosets (Callithrix jacchus) and performed pathological analyses, manganese-enhanced magnetic resonance imaging, and 18 F-fluoro-2-deoxy-d-glucose positron emission tomography up to 6 months postinoculation. RESULTS: Severe α-Syn pathology was observed within the olfactory pathway and limbic system, while mild α-Syn pathology was seen in a wide range of brain regions, including the substantia nigra pars compacta, locus coeruleus, and even dorsal motor nucleus of the vagus nerve. The brain imaging analyses showed reduction in volume of the OB and progressive glucose hypometabolism in widespread brain regions, including the occipital lobe, and extended beyond the pathologically affected regions. CONCLUSIONS: We generated a novel nonhuman primate LBD model with α-Syn propagation from the OB. This model suggests that α-Syn propagation from the OB is related to OB atrophy and cerebral glucose hypometabolism in LBDs. © 2022 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Animales , Callithrix/metabolismo , Desoxiglucosa/metabolismo , Glucosa/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Manganeso/metabolismo , Bulbo Olfatorio/metabolismo , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
5.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36362177

RESUMEN

Accumulation of α-synuclein (α-syn) is the pathological hallmark of α-synucleinopathy. Rapid eye movement (REM) sleep behavior disorder (RBD) is a pivotal manifestation of α-synucleinopathy including Parkinson's disease (PD). RBD is clinically confirmed by REM sleep without atonia (RWA) in polysomnography. To accurately characterize RWA preceding RBD and their underlying α-syn pathology, we inoculated α-syn preformed fibrils (PFFs) into the striatum of A53T human α-syn BAC transgenic (A53T BAC-SNCA Tg) mice which exhibit RBD-like phenotypes with RWA. RWA phenotypes were aggravated by PFFs-inoculation in A53T BAC-SNCA Tg mice at 1 month after inoculation, in which prominent α-syn pathology in the pedunculopontine nucleus (PPN) was observed. The intensity of RWA phenotype could be dependent on the severity of the underlying α-syn pathology.


Asunto(s)
Trastorno de la Conducta del Sueño REM , Sinucleinopatías , Animales , Humanos , Ratones , alfa-Sinucleína/genética , Sueño REM , Ratones Transgénicos , Sinucleinopatías/genética , Trastorno de la Conducta del Sueño REM/genética , Hipotonía Muscular , Fenotipo
6.
Hum Mol Genet ; 28(11): 1894-1904, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30689867

RESUMEN

Parkinson's disease (PD) is characterized by dopaminergic (DA) cell loss and the accumulation of pathological alpha synuclein (asyn), but its precise pathomechanism remains unclear, and no appropriate animal model has yet been established. Recent studies have shown that a heterozygous mutation of glucocerebrosidase (gba) is one of the most important genetic risk factors in PD. To create mouse model for PD, we crossed asyn Bacterial Artificial Chromosome transgenic mice with gba heterozygous knockout mice. These double-mutant (dm) mice express human asyn in a physiological manner through its native promoter and showed an increase in phosphorylated asyn in the regions vulnerable to PD, such as the olfactory bulb and dorsal motor nucleus of the vagus nerve. Only dm mice showed a significant reduction in DA cells in the substantia nigra pars compacta, suggesting these animals were suitable for a prodromal model of PD. Next, we investigated the in vivo mechanism by which GBA insufficiency accelerates PD pathology, focusing on lipid metabolism. Dm mice showed an increased level of glucosylsphingosine without any noticeable accumulation of glucosylceramide, a direct substrate of GBA. In addition, the overexpression of asyn resulted in decreased GBA activity in mice, while dm mice tended to show an even further decreased level of GBA activity. In conclusion, we created a novel prodromal mouse model to study the disease pathogenesis and develop novel therapeutics for PD and also revealed the mechanism by which heterozygous gba deficiency contributes to PD through abnormal lipid metabolism under conditions of an altered asyn expression in vivo.


Asunto(s)
Glucosilceramidasa/genética , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Humanos , Metabolismo de los Lípidos/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Porción Compacta de la Sustancia Negra/metabolismo , Porción Compacta de la Sustancia Negra/patología , Síntomas Prodrómicos
7.
Mov Disord ; 36(7): 1554-1564, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33813737

RESUMEN

BACKGROUND: The intercellular transmission of pathogenic proteins plays a key role in the clinicopathological progression of neurodegenerative diseases. Previous studies have demonstrated that this uptake and release process is regulated by neuronal activity. OBJECTIVE: The objective of this study was to examine the effect of perampanel, an antiepileptic drug, on α-synuclein transmission in cultured cells and mouse models of Parkinson's disease. METHODS: Mouse primary hippocampal neurons were transduced with α-synuclein preformed fibrils to examine the effect of perampanel on the development of α-synuclein pathology and its mechanisms of action. An α-synuclein preformed fibril-injected mouse model was used to validate the effect of oral administration of perampanel on the α-synuclein pathology in vivo. RESULTS: Perampanel inhibited the development of α-synuclein pathology in mouse hippocampal neurons transduced with α-synuclein preformed fibrils. Interestingly, perampanel blocked the neuronal uptake of α-synuclein preformed fibrils by inhibiting macropinocytosis in a neuronal activity-dependent manner. We confirmed that oral administration of perampanel ameliorated the development of α-synuclein pathology in wild-type mice inoculated with α-synuclein preformed fibrils. CONCLUSION: Modulation of neuronal activity could be a promising therapeutic target for Parkinson's disease, and perampanel could be a novel disease-modifying drug for Parkinson's disease. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Animales , Ratones , Nitrilos , Enfermedad de Parkinson/tratamiento farmacológico , Piridonas/farmacología , alfa-Sinucleína/genética
8.
Mov Disord ; 36(9): 2036-2047, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33547846

RESUMEN

BACKGROUND: Patients with Parkinson's disease (PD) show motor symptoms as well as various non-motor symptoms. Postmortem studies of PD have suggested that initial alpha-synuclein (α-Syn) pathology develops independently in the olfactory bulb and lower brainstem, spreading from there stereotypically. However, it remains unclear how these two pathological pathways contribute to the clinicopathological progression of PD. OBJECTIVE: The objective of this study was to examine the clinicopathological contribution of α-Syn spread from the olfactory bulb. METHODS: We conducted pathological and behavioral analyses of human α-Syn bacterial artificial chromosome transgenic mice injected with α-Syn preformed fibrils into the bilateral olfactory bulb up to 10 months postinjection. RESULTS: α-Syn preformed fibril injections induced more widespread α-Syn pathology in the transgenic mice than that in wild-type mice. Severe α-Syn pathology in the transgenic mice injected with α-Syn preformed fibrils was initially observed along the olfactory pathway and later in the brain regions that are included in the limbic system and have connections with it. The α-Syn pathology was accompanied by regional atrophy, neuron loss, reactive astrogliosis, and microglial activation, which were remarkable in the hippocampus. Behavioral analyses revealed hyposmia, followed by anxiety-like behavior and memory impairment, but not motor dysfunction, depression-like behavior, or circadian rhythm disturbance. CONCLUSION: Our data suggest that α-Syn spread from the olfactory bulb mainly affects the olfactory pathway and limbic system as well as its related regions, leading to the development of hyposmia, anxiety, and memory loss in PD. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Bulbo Olfatorio , alfa-Sinucleína , Animales , Anosmia , Ansiedad/etiología , Modelos Animales de Enfermedad , Humanos , Trastornos de la Memoria/etiología , Ratones , Ratones Transgénicos , Bulbo Olfatorio/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
9.
Brain ; 143(1): 249-265, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31816026

RESUMEN

Parkinson's disease is one of the most common movement disorders and is characterized by dopaminergic cell loss and the accumulation of pathological α-synuclein, but its precise pathogenetic mechanisms remain elusive. To develop disease-modifying therapies for Parkinson's disease, an animal model that recapitulates the pathology and symptoms of the disease, especially in the prodromal stage, is indispensable. As subjects with α-synuclein gene (SNCA) multiplication as well as point mutations develop familial Parkinson's disease and a genome-wide association study in Parkinson's disease has identified SNCA as a risk gene for Parkinson's disease, the increased expression of α-synuclein is closely associated with the aetiology of Parkinson's disease. In this study we generated bacterial artificial chromosome transgenic mice harbouring SNCA and its gene expression regulatory regions in order to maintain the native expression pattern of α-synuclein. Furthermore, to enhance the pathological properties of α-synuclein, we inserted into SNCA an A53T mutation, two single-nucleotide polymorphisms identified in a genome-wide association study in Parkinson's disease and a Rep1 polymorphism, all of which are causal of familial Parkinson's disease or increase the risk of sporadic Parkinson's disease. These A53T SNCA bacterial artificial chromosome transgenic mice showed an expression pattern of human α-synuclein very similar to that of endogenous mouse α-synuclein. They expressed truncated, oligomeric and proteinase K-resistant phosphorylated forms of α-synuclein in the regions that are specifically affected in Parkinson's disease and/or dementia with Lewy bodies, including the olfactory bulb, cerebral cortex, striatum and substantia nigra. Surprisingly, these mice exhibited rapid eye movement (REM) sleep without atonia, which is a key feature of REM sleep behaviour disorder, at as early as 5 months of age. Consistent with this observation, the REM sleep-regulating neuronal populations in the lower brainstem, including the sublaterodorsal tegmental nucleus, nuclei in the ventromedial medullary reticular formation and the pedunculopontine nuclei, expressed phosphorylated α-synuclein. In addition, they also showed hyposmia at 9 months of age, which is consistent with the significant accumulation of phosphorylated α-synuclein in the olfactory bulb. The dopaminergic neurons in the substantia nigra pars compacta degenerated, and their number was decreased in an age-dependent manner by up to 17.1% at 18 months of age compared to wild-type, although the mice did not show any related locomotor dysfunction. In conclusion, we created a novel mouse model of prodromal Parkinson's disease that showed RBD-like behaviour and hyposmia without motor symptoms.


Asunto(s)
Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones , Trastornos del Olfato/genética , Enfermedad de Parkinson/genética , Síntomas Prodrómicos , Trastorno de la Conducta del Sueño REM/genética , alfa-Sinucleína/genética , Animales , Recuento de Células , Cromosomas Artificiales Bacterianos , Electroencefalografía , Electromiografía , Endopeptidasa K/metabolismo , Ratones Transgénicos , Trastornos del Olfato/fisiopatología , Enfermedad de Parkinson/fisiopatología , Polimorfismo de Nucleótido Simple , Trastorno de la Conducta del Sueño REM/fisiopatología , Sueño , alfa-Sinucleína/metabolismo
10.
Muscle Nerve ; 61(1): 81-87, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31588577

RESUMEN

INTRODUCTION: Myopathy associated with anti-mitochondrial antibody (AMA) has recently been characterized as a distinct type of idiopathic inflammatory myopathy. The purpose of this study is to evaluate the pattern of involvement in thigh muscles in AMA myopathy using MRI. METHODS: Six patients with AMA myopathy were identified and their muscle MRI findings evaluated. RESULTS: On thigh muscle MRI, all six patients showed high signal intensity with short-tau inversion recovery that reflected disease activity mostly in the adductor magnus, called a "cuneiform sign." Fatty degeneration was also prominent in the adductor magnus, as well as the semimembranosus muscles. DISCUSSION: These characteristic changes on MRI contrast with those of other inflammatory myopathies. From these observations, we concluded that the localization pattern of the inflammatory changes in muscle MRI can contribute to the diagnosis of AMA myopathy.


Asunto(s)
Autoanticuerpos/inmunología , Enfermedades Autoinmunes/complicaciones , Enfermedades Autoinmunes/diagnóstico por imagen , Mitocondrias Musculares/inmunología , Miopatías Mitocondriales/diagnóstico por imagen , Miopatías Mitocondriales/etiología , Músculo Esquelético/diagnóstico por imagen , Muslo/diagnóstico por imagen , Tejido Adiposo/patología , Adulto , Anciano , Atrofia , Femenino , Granuloma/patología , Humanos , Hipertrofia , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Músculo Esquelético/patología , Muslo/patología
11.
J Int Neuropsychol Soc ; 26(4): 418-429, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31822311

RESUMEN

OBJECTIVES: Patients with Parkinson's disease (PD) exhibit impaired semantic and socioemotional processes, which are thought to be related to dysfunctions in the fronto-striatal circuit. However, little is known about how the memory enhancement by these processes was reduced in PD. The present study investigated this issue. METHODS: The retrieval performance of face memories encoded by semantic and socioemotional processes was compared between 24 PD patients and 24 age-matched healthy controls (HC). During encoding, participants were presented with unfamiliar faces and made judgment about them in three encoding conditions of semantic judgment (Semantics), attractiveness judgment (Attractiveness), and form judgment (Form). In Semantics, participants rated to what degree each face looked like an office worker, whereas in Attractiveness, participants rated how attractive each face was. The Form condition as a control required participants to judge the shape of each face. During retrieval after encoding, participants made old or new judgment for target and distracter faces. RESULTS: In HC, the retrieval of faces encoded by Semantics and Attractiveness was significantly more accurate than that encoded by Form, whereas this memory enhancement was not identified in PD. In addition, individual scores in frontal lobe function and long-term memory correlated with the retrieval performance of memories encoded in Semantics and Attractiveness but not Form. CONCLUSIONS: These findings suggest that the processing of semantic and socioemotional signals conveyed from faces could be impaired in PD and that the impairment of these processes could decrease the enhancement of face memories by semantic and socioemotional elaborations.


Asunto(s)
Disfunción Cognitiva/fisiopatología , Reconocimiento Facial/fisiología , Trastornos de la Memoria/fisiopatología , Recuerdo Mental/fisiología , Enfermedad de Parkinson/fisiopatología , Anciano , Disfunción Cognitiva/etiología , Femenino , Humanos , Juicio/fisiología , Masculino , Trastornos de la Memoria/etiología , Persona de Mediana Edad , Enfermedad de Parkinson/complicaciones , Semántica
12.
Int J Mol Sci ; 21(6)2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32183024

RESUMEN

Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra and subsequent motor symptoms, but various non-motor symptoms (NMS) often precede motor symptoms. Recently, NMS have attracted much attention as a clue for identifying patients in a prodromal stage of PD, which is an excellent point at which to administer disease-modifying therapies (DMTs). These prodromal symptoms include olfactory loss, constipation, and sleep disorders, especially rapid eye movement sleep behavior disorder (RBD), all of which are also important for elucidating the mechanisms of the initiation and progression of the disease. For the development of DMTs, an animal model that reproduces the prodromal stage of PD is also needed. There have been various mammalian models reported, including toxin-based, genetic, and alpha synuclein propagation models. In this article, we review the animal models that exhibit NMS as prodromal symptoms and also discuss an appropriate prodromal model and its importance for the development of DMT of PD.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Parkinson/patología , Síntomas Prodrómicos , Animales , Humanos , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/fisiopatología
13.
PLoS Genet ; 11(4): e1005065, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25835295

RESUMEN

Homozygous mutations in the glucocerebrosidase (GBA) gene result in Gaucher disease (GD), the most common lysosomal storage disease. Recent genetic studies have revealed that GBA mutations confer a strong risk for sporadic Parkinson's disease (PD). To investigate how GBA mutations cause PD, we generated GBA nonsense mutant (GBA-/-) medaka that are completely deficient in glucocerebrosidase (GCase) activity. In contrast to the perinatal death in humans and mice lacking GCase activity, GBA-/- medaka survived for months, enabling analysis of the pathological progression. GBA-/- medaka displayed the pathological phenotypes resembling human neuronopathic GD including infiltration of Gaucher cell-like cells into the brains, progressive neuronal loss, and microgliosis. Detailed pathological findings represented lysosomal abnormalities in neurons and alpha-synuclein (α-syn) accumulation in axonal swellings containing autophagosomes. Unexpectedly, disruption of α-syn did not improve the life span, formation of axonal swellings, neuronal loss, or neuroinflammation in GBA-/- medaka. Taken together, the present study revealed GBA-/- medaka as a novel neuronopathic GD model, the pahological mechanisms of α-syn accumulation caused by GCase deficiency, and the minimal contribution of α-syn to the pathogenesis of neuronopathic GD.


Asunto(s)
Axones/metabolismo , Enfermedad de Gaucher/genética , Glucosilceramidasa/deficiencia , Oryzias/genética , alfa-Sinucleína/metabolismo , Animales , Axones/ultraestructura , Modelos Animales de Enfermedad , Enfermedad de Gaucher/metabolismo , Enfermedad de Gaucher/patología , Glucosilceramidasa/genética , Oryzias/metabolismo , Fagosomas/metabolismo
14.
J Neurosci Res ; 95(9): 1829-1837, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28233934

RESUMEN

Patient-specific induced pluripotent stem cells (iPSCs) are a promising source for cell transplantation therapy. In Parkinson's disease (PD) patients, however, their vulnerability and the transmission of pathological α-Synuclein are possible drawbacks that may prevent PD-specific iPSCs (PDiPSCs) from being used in clinical settings. In this study, we generated iPSCs from idiopathic PD patients and found that there was no significant vulnerability between dopaminergic (DA) neurons generated from healthy individuals and idiopathic PD patients. PDiPSC-derived DA neurons survived and functioned in the brains of PD model rats. In addition, in the brains of α-Synuclein transgenic mice, PDiPSC-derived DA neurons did not cause pathological α-Synuclein accumulation in the host brain or in the grafts. These results suggested that iPSCs derived from idiopathic PD patients are feasible as donor cells for autologous transplantation to treat PD. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Neuronas Dopaminérgicas/citología , Células Madre Pluripotentes Inducidas/trasplante , Enfermedad de Parkinson , Adulto , Anciano , Animales , Femenino , Xenoinjertos , Humanos , Masculino , Mesencéfalo/citología , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Ratas , Ratas Sprague-Dawley , Trasplante de Células Madre/métodos
16.
Hum Mol Genet ; 22(12): 2423-34, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23449626

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by selective dopaminergic cell loss in the substantia nigra, but its pathogenesis remains unclear. The recessively inherited familial PD genes PARK2 and PARK6 have been attributed to mutations in the Parkin and PTEN-induced kinase 1 (PINK1) genes, respectively. Recent reports suggest that PINK1 works upstream of Parkin in the same pathway to regulate mitochondrial dynamics and/or conduct autophagic clearance of damaged mitochondria. This phenomenon is preserved from Drosophila to human cell lines but has not been demonstrated in a vertebrate animal model in vivo. Here, we developed a medaka fish (Oryzias latipes) model that is deficient in Pink1 and Parkin. We found that despite the lack of a conspicuous phenotype in single mutants for Pink1 or Parkin, medaka that are deficient in both genes developed phenotypes similar to that of human PD: late-onset locomotor dysfunction, a decrease in dopamine levels and a selective degeneration of dopaminergic neurons. Further analysis also revealed defects in mitochondrial enzymatic activity as well as cell death. Consistently, PINK1 and Parkin double-deficient MEF showed a further decrease in mitochondrial membrane potential and mitochondrial complex I activity as well as apoptosis compared with single-deficient MEF. Interestingly, these mitochondrial abnormalities in Parkin-deficient MEF were compensated by exogenous PINK1, but not by disease-related mutants. These results suggest that PINK1 and Parkin work in a complementary way to protect dopaminergic neurons by maintaining mitochondrial function in vertebrates.


Asunto(s)
Dopamina/metabolismo , Proteínas de Peces/metabolismo , Neuronas/metabolismo , Oryzias/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Apoptosis , Modelos Animales de Enfermedad , Drosophila , Proteínas de Peces/genética , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Neuronas/citología , Oryzias/genética , Enfermedad de Parkinson/genética , Fenotipo , Proteínas Quinasas/genética , Ubiquitina-Proteína Ligasas/genética , Vertebrados/genética , Vertebrados/metabolismo
18.
Brain ; 136(Pt 2): 412-32, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23413261

RESUMEN

Conversion of soluble α-synuclein into insoluble and fibrillar inclusions is a hallmark of Parkinson's disease and other synucleinopathies. Accumulating evidence points towards a relationship between its generation at nerve terminals and structural synaptic pathology. Little is known about the pathogenic impact of α-synuclein conversion and deposition at nigrostriatal dopaminergic synapses in transgenic mice, mainly owing to expression limitations of the α-synuclein construct. Here, we explore whether both the rat as a model and expression of the bacterial artificial chromosome construct consisting of human full-length wild-type α-synuclein could exert dopaminergic neuropathological effects. We found that the human promoter induced a pan-neuronal expression, matching the rodent α-synuclein expression pattern, however, with prominent C-terminally truncated fragments. Ageing promoted conversion of both full-length and C-terminally truncated α-synuclein species into insolube and proteinase K-resistant fibres, with strongest accumulation in the striatum, resembling biochemical changes seen in human Parkinson's disease. Transgenic rats develop early changes in novelty-seeking, avoidance and smell before the progressive motor deficit. Importantly, the observed pathological changes were associated with severe loss of the dopaminergic integrity, thus resembling more closely the human pathology.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , Neuronas Dopaminérgicas/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Fenotipo , alfa-Sinucleína/genética , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Neuronas Dopaminérgicas/metabolismo , Humanos , Enfermedad de Parkinson/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , alfa-Sinucleína/biosíntesis , alfa-Sinucleína/toxicidad
19.
J Parkinsons Dis ; 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38427504

RESUMEN

There is an estimated 35-45% loss of striatal dopamine at the time of diagnosis of Parkinson's disease (PD), and cases clinically diagnosed in the early stages may already be pathologically in advanced stages. Recent large-scale clinical trials of disease-modifying therapies (DMT) also suggest the necessity of targeting patients at earlier stages of the disease. From this perspective, the prodromal phase of PD is currently the focus of attention, emphasizing the need for a prodromal mouse model that accurately reflects the pathophysiology, along with early biomarkers. To establish prodromal animal model of PD with high face validity that reflects the disease state, the model must possess high construct validity that accurately incorporates clinical and pathological features in the prodromal phase. Furthermore, as a preclinical model of DMT, the model must possess high predictive validity to accurately evaluate the response to intervention. This review provides an overview of animal models which reflect the characteristics of prodromal PD, including alpha-synuclein (aS) accumulation and associated early non-motor symptoms, with a focus on the aS propagation model and genetic model. In addition, we discuss the challenges associated with these models. The genetic model often fails to induce motor symptoms, while aS propagation models skip the crucial step of initial aS aggregate formation, thereby not fully replicating the entire natural course of the disease. Identifying factors that induce the transition from prodromal to symptomatic phase is important as a preclinical model for DMT to prevent or delay the onset of the disease.

20.
Mol Brain ; 17(1): 28, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790036

RESUMEN

The aggregated alpha-synuclein (αsyn) in oligodendrocytes (OLGs) is one of the pathological hallmarks in multiple system atrophy (MSA). We have previously reported that αsyn accumulates not only in neurons but also in OLGs long after the administration of αsyn preformed fibrils (PFFs) in mice. However, detailed spatial and temporal analysis of oligodendroglial αsyn aggregates was technically difficult due to the background neuronal αsyn aggregates. The aim of this study is to create a novel mouse that easily enables sensitive and specific detection of αsyn aggregates in OLGs and the comparable analysis of the cellular tropism of αsyn aggregates in MSA brains. To this end, we generated transgenic (Tg) mice expressing human αsyn-green fluorescent protein (GFP) fusion proteins in OLGs under the control of the 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) promoter (CNP-SNCAGFP Tg mice). Injection of αsyn PFFs in these mice induced distinct GFP-positive aggregates in the processes of OLGs as early as one month post-inoculation (mpi), and their number and size increased in a centripetal manner. Moreover, MSA-brain homogenates (BH) induced significantly more oligodendroglial αsyn aggregates than neuronal αsyn aggregates compared to DLB-BH in CNP-SNCAGFP Tg mice, suggestive of their potential tropism of αsyn seeds for OLGs. In conclusion, CNP-SNCAGFP Tg mice are useful for studying the development and tropism of αsyn aggregates in OLGs and could contribute to the development of therapeutics targeting αsyn aggregates in OLGs.


Asunto(s)
Cuerpos de Inclusión , Atrofia de Múltiples Sistemas , Oligodendroglía , Agregado de Proteínas , alfa-Sinucleína , Animales , Humanos , Ratones , alfa-Sinucleína/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Citoplasma/metabolismo , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/metabolismo , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Ratones Transgénicos , Atrofia de Múltiples Sistemas/patología , Atrofia de Múltiples Sistemas/metabolismo , Oligodendroglía/metabolismo , Oligodendroglía/patología , Agregación Patológica de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA