Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Development ; 150(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37882667

RESUMEN

A mouse organoid culture model was developed to regenerate articular cartilage by sequential treatment with BMP2 and BMP9 (or GDF2) that parallels induced joint regeneration at digit amputation wounds in vivo. BMP9-induced chondrogenesis was used to identify clonal cell lines for articular chondrocyte and hypertrophic chondrocyte progenitor cells from digit fibroblasts. A protocol that includes cell aggregation enhanced by BMP2 followed by BMP9-induced chondrogenesis resulted in the differentiation of organized layers of articular chondrocytes, similar to the organization of middle and deep zones of articular cartilage in situ, and retained a differentiated phenotype following transplantation. In addition, the differentiation of a non-chondrogenic connective tissue layer containing articular chondrocyte progenitor cells demonstrated that progenitor cell sequestration is coupled with articular cartilage differentiation at a clonal level. The studies identify a dormant endogenous regenerative program for a non-regenerative tissue in which fibroblast-derived progenitor cells can be induced to initiate morphogenetic and differentiative programs that include progenitor cell sequestration. The identification of dormant regenerative programs in non-regenerative tissues such as articular cartilage represents a novel strategy that integrates regeneration biology with regenerative medicine.


Asunto(s)
Cartílago Articular , Animales , Ratones , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Células Madre , Diferenciación Celular/genética , Línea Celular , Modelos Animales de Enfermedad , Condrogénesis/genética
2.
Development ; 149(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35005773

RESUMEN

Amputation injuries in mammals are typically non-regenerative; however, joint regeneration is stimulated by BMP9 treatment, indicating the presence of latent articular chondrocyte progenitor cells. BMP9 induces a battery of chondrogenic genes in vivo, and a similar response is observed in cultures of amputation wound cells. Extended cultures of BMP9-treated cells results in differentiation of hyaline cartilage, and single cell RNAseq analysis identified wound fibroblasts as BMP9 responsive. This culture model was used to identify a BMP9-responsive adult fibroblast cell line and a culture strategy was developed to engineer hyaline cartilage for engraftment into an acutely damaged joint. Transplanted hyaline cartilage survived engraftment and maintained a hyaline cartilage phenotype, but did not form mature articular cartilage. In addition, individual hypertrophic chondrocytes were identified in some samples, indicating that the acute joint injury site can promote osteogenic progression of engrafted hyaline cartilage. The findings identify fibroblasts as a cell source for engineering articular cartilage and establish a novel experimental strategy that bridges the gap between regeneration biology and regenerative medicine.


Asunto(s)
Diferenciación Celular , Fibroblastos/citología , Cartílago Hialino/citología , Regeneración , Ingeniería de Tejidos/métodos , Animales , Células Cultivadas , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrogénesis , Fibroblastos/efectos de los fármacos , Factor 2 de Diferenciación de Crecimiento/farmacología , Cartílago Hialino/metabolismo , Cartílago Hialino/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID
3.
Dev Biol ; 486: 71-80, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35353991

RESUMEN

It is long-established that innervation-dependent production of neurotrophic factors is required for blastema formation and epimorphic regeneration of appendages in fish and amphibians. The regenerating mouse digit tip and the human fingertip are mammalian models for epimorphic regeneration, and limb denervation in mice inhibits this response. A complicating issue of limb denervation studies in terrestrial vertebrates is that the experimental models also cause severe paralysis therefore impairing appendage use and diminishing mechanical loading of the denervated tissues. Thus, it is unclear whether the limb denervation impairs regeneration via loss of neurotrophic signaling or loss of mechanical load, or both. Herein, we developed a novel surgical procedure in which individual digits were specifically denervated without impairing ambulation and mechanical loading. We demonstrate that digit specific denervation does not inhibit but attenuates digit tip regeneration, in part due to a delay in wound healing. However, treating denervated digits with a wound dressing that enhances closure results in a partial rescue of the regeneration response. Contrary to the current understanding of mammalian epimorphic regeneration, these studies demonstrate that mouse digit tip regeneration is not peripheral nerve dependent, an observation that should inform continued mammalian regenerative medicine approaches.


Asunto(s)
Amputación Quirúrgica , Extremidades , Animales , Desnervación , Extremidades/fisiología , Mamíferos , Ratones , Cicatrización de Heridas/fisiología
4.
Wound Repair Regen ; 31(1): 17-27, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36177656

RESUMEN

Humans and mice have the ability to regenerate the distal digit tip, the terminal phalanx (P3) in response to amputation. What distinguishes P3 regeneration from regenerative failure is formation of the blastema, a proliferative structure that undergoes morphogenesis to regenerate the amputated tissues. P3 regeneration is characterised by the phases of inflammation, tissue histolysis and expansive bone degradation with simultaneous blastema formation, wound closure and finally blastemal differentiation to restore the amputated structures. While each regenerating digit faithfully progresses through all phases of regeneration, phase progression has traditionally been delineated by time, that is, days postamputation (DPA), yet there is widespread variability in the timing of the individual phases. To diminish variability between digits during tissue histolysis and blastema formation, we have established an in-vivo method using microcomputed tomography (micro CT) scanning to identify five distinct stages of the early regeneration response based on anatomical changes of the digit stump. We report that categorising the initial phases of digit regeneration by stage rather than time greatly diminishes the variability between digits with respect to changes in bone volume and length. Also, stages correlate with the levels of cell proliferation, osteoclast recruitment and osteoprogenitor cell recruitment. Importantly, micro CT staging provides a means to estimate open versus closed digit wounds. We demonstrate two spatially distinct and stage specific bone repair/regeneration responses that occur during P3 regeneration. Collectively, these studies showcase the utility of micro CT imaging to infer the composition of radiolucent soft tissues during P3 blastema formation. Specifically, the staging system identifies the onset of cell proliferation, osteoclastogenesis, osteoprogenitor recruitment, the spatial initiation of de novo bone formation and epidermal closure.


Asunto(s)
Osteogénesis , Cicatrización de Heridas , Ratones , Animales , Humanos , Microtomografía por Rayos X , Cicatrización de Heridas/fisiología , Osteogénesis/fisiología , Osteoclastos/fisiología , Regeneración Ósea/fisiología
5.
Environ Sci Technol ; 56(6): 3801-3811, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35188748

RESUMEN

Transformation of metastable Fe(III) oxyhydroxides is a prominent process in natural environments and can be significantly accelerated by the coexisting aqueous Fe(II) (Fe(II)aq). Recent evidence points to the solution mass transfer of labile Fe(III) (Fe(III)labile) as the primary intermediate species of general importance. However, a mechanistic aspect that remains unclear is the dependence of phase outcomes on the identity of the metastable Fe(III) oxyhydroxide precursor. Here, we compared the coupled evolution of Fe(II) species, solid phases, and Fe(III)labile throughout the Fe(II)-catalyzed transformation of lepidocrocite (Lp) versus ferrihydrite (Fh) at equal Fe(III) mass loadings with 0.2-1.0 mM Fe(II)aq at pH = 7.0. Similar to Fh, the conversion of Lp to product phases occurs by a dissolution-reprecipitation mechanism mediated by Fe(III)labile that seeds the nucleation of products. Though for Fh we observed a transformation to goethite (Gt), accompanied by the transient emergence and decline of Lp, for initial Lp we observed magnetite (Mt) as the main product. A linear correlation between the formation rate of Mt and the effective supersaturation in terms of Fe(III)labile concentration shows that Fe(II)-induced transformation of Lp into Mt is governed by the classical nucleation theory. When Lp is replaced by equimolar Gt, Mt formation is suppressed by opening a lower barrier pathway to Gt by heterogeneous nucleation and growth on the added Gt seeds. The collective findings add to the mechanistic understanding of factors governing phase selections that impact iron bioavailability, system redox potential, and the fate and transport of coupled elements.


Asunto(s)
Compuestos Férricos , Minerales , Catálisis , Óxido Ferrosoférrico , Oxidación-Reducción
6.
Wound Repair Regen ; 29(1): 196-205, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32815252

RESUMEN

Complete extremity regeneration in mammals is restricted to distal amputations of the digit tip, the terminal phalanx (P3). In mice, P3 regeneration is mediated via the formation of a blastema, a transient population of progenitor cells that form from the blending of periosteal and endosteal/marrow compartmentalized cells that undergo differentiation to restore the amputated structures. Compartmentalized blastema cells are formed independently, and periosteal compartment-derived cells are required for restoration of amputated skeletal length. P3 regenerative capacity is progressively attenuated at increasingly more proximal amputation levels, eventually resulting in regenerative failure. The continuum of regenerative capacity within the P3 wound milieu is a unique model to investigate mammalian blastema formation in response to distal amputation, as well as the healing response associated with regenerative failure at proximal amputation levels. We report that P3 proximal amputation healing, previously reported to result in regenerative failure, is not an example of complete regenerative failure, but instead is characterized by a limited bone regeneration response restricted to the endosteal/marrow compartment. The regeneration response is mediated by blastema formation within the endosteal/marrow compartment, and blastemal osteogenesis progresses through intramembranous ossification in a polarized proximal to distal sequence. Unlike bone regeneration following distal P3 amputation, osteogenesis within the periosteal compartment is not observed in response to proximal P3 amputation. We provide evidence that proximal P3 amputation initiates the formation of fibrotic tissue that isolates the endosteal/marrow compartment from the periosteal compartment and wound epidermis. While the fibrotic response is transient and later resolved, these studies demonstrate that blastema formation and fibrosis can occur in close proximity, with the regenerative response dominating the final outcome. Moreover, the results suggest that the attenuated proximal P3 regeneration response is associated with the absence of periosteal-compartment participation in blastema formation and bone regeneration.


Asunto(s)
Amputación Quirúrgica , Regeneración Ósea/fisiología , Miembro Posterior/fisiología , Osteogénesis/fisiología , Cicatrización de Heridas/fisiología , Heridas y Lesiones/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Miembro Posterior/diagnóstico por imagen , Miembro Posterior/cirugía , Ratones , Heridas y Lesiones/patología , Microtomografía por Rayos X
7.
Dev Biol ; 445(2): 237-244, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30458171

RESUMEN

Mice are intrinsically capable of regenerating the tips of their digits after amputation. Mouse digit tip regeneration is reported to be a peripheral nerve-dependent event. However, it is presently unknown what types of nerves and Schwann cells innervate the digit tip, and to what extent these cells regenerate in association with the regenerative response. Given the necessity of peripheral nerves for mammalian regeneration, we investigated the neuroanatomy of the unamputated, regenerating, and regenerated mouse digit tip. Using immunohistochemistry for ß-III-tubulin (ß3T) or neurofilament H (NFH), substance P (SP), tyrosine hydroxylase (TH), myelin protein zero (P0), and glial fibrillary acidic protein (GFAP), we identified peripheral nerve axons (sensory and sympathetic), and myelinating- and non-myelinating-Schwann cells. Our findings show that the digit tip is innervated by two digital nerves that each bifurcate into a bone marrow (BM) and connective tissue (CT) branch. The BM branches are composed of sympathetic axons that are ensheathed by non-myelinating-Schwann cells whereas the CT branches are composed of sensory and sympathetic axons and are ensheathed by myelinating- and non-myelinating-Schwann cells. The regenerated digit neuroanatomy differs from unamputated digit in several key ways. First, there is 7.5 fold decrease in CT branch axons in the regenerated digit compared to the unampuated digit. Second, there is a 5.6 fold decrease in myelinating-Schwann cells in the regenerated digit compared to the unamputated digit that is consistent with the decrease in CT branch axons. Importantly, we also find that the central portion of the regenerating digit blastema is aneural, with axons and Schwann cells restricted to peripheral and distal blastema regions. Finally, we show that even with impaired innervation, digits maintain the ability to regenerate after re-amputation. Taken together, these data indicate that nerve regeneration is impaired in the context of mouse digit tip regeneration.


Asunto(s)
Axones/fisiología , Regeneración Nerviosa/fisiología , Regeneración/fisiología , Amputación Quirúrgica , Animales , Axones/ultraestructura , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica , Ratones , Proteínas de Neurofilamentos/metabolismo , Nervios Periféricos/anatomía & histología , Nervios Periféricos/fisiología , Células de Schwann/fisiología , Dedos del Pie/anatomía & histología , Dedos del Pie/inervación , Dedos del Pie/fisiología , Tubulina (Proteína)/metabolismo
8.
Development ; 144(21): 3907-3916, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28935712

RESUMEN

In mammals, macrophages are known to play a major role in tissue regeneration. They contribute to inflammation, histolysis, re-epithelialization, revascularization and cell proliferation. Macrophages have been shown to be essential for regeneration in salamanders and fish, but their role has not been elucidated in mammalian epimorphic regeneration. Here, using the regenerating mouse digit tip as a mammalian model, we demonstrate that macrophages are essential for the regeneration process. Using cell-depletion strategies, we show that regeneration is completely inhibited; bone histolysis does not occur, wound re-epithelialization is inhibited and the blastema does not form. Although rescue of epidermal wound closure in the absence of macrophages promotes blastema accumulation, it does not rescue cell differentiation, indicating that macrophages play a key role in the redifferentiation of the blastema. We provide additional evidence that although bone degradation is a component, it is not essential to the overall regenerative process. These findings show that macrophages play an essential role in coordinating the epimorphic regenerative response in mammals.


Asunto(s)
Extremidades/fisiología , Macrófagos/fisiología , Regeneración/fisiología , Amputación Quirúrgica , Animales , Resorción Ósea/patología , Recuento de Células , Ácido Clodrónico/administración & dosificación , Ácido Clodrónico/farmacología , Epidermis/efectos de los fármacos , Epidermis/fisiología , Femenino , Liposomas , Macrófagos/efectos de los fármacos , Ratones , Neutrófilos/efectos de los fármacos , Neutrófilos/fisiología , Especificidad de Órganos , Osteoclastos/efectos de los fármacos , Osteoclastos/patología , Regeneración/efectos de los fármacos
9.
J Environ Sci (China) ; 76: 1-11, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30528000

RESUMEN

Coagulation is the best available method for removing intracellular organic matter (IOM), which is released from algae cells and is an important precursor to disinfection by-products in drinking water treatment. To gain insight into the best strategy to optimize IOM removal, the coagulation performance of two Al salts, i.e., aluminum chloride (AlCl3) and polyaluminum chloride (PACl, containing 81.2% Al13), was investigated to illuminate the effect of Al species distribution on IOM removal. PACl showed better removal efficiency than AlCl3 with regard to the removal of turbidity and dissolved organic carbon (DOC), owing to the higher charge neutralization effect and greater stability of pre-formed Al13 species. High pressure size exclusion chromatography analysis indicated that the superiority of PACl in DOC removal could be ascribed to the higher binding affinity between Al13 polymer and the low and medium molecular weight (MW) fractions of IOM. The results of differential log-transformed absorbance at 254 and 350 nm indicated more significant formation of complexes between AlCl3 and IOM, which benefits the removal of tryptophan-like proteins thereafter. Additionally, PACl showed more significant superiority compared to AlCl3 in the removal of <5 kDa and hydrophilic fractions, which are widely viewed as the most difficult to remove by coagulation. This study provides insight into the interactions between Al species and IOM, and advances the optimization of coagulation for the removal of IOM in eutrophic water.


Asunto(s)
Aluminio/química , Espacio Intracelular/química , Compuestos Orgánicos/química , Compuestos Orgánicos/aislamiento & purificación , Polímeros/química , Eutrofización , Microcystis/citología , Microcystis/crecimiento & desarrollo , Peso Molecular
10.
Wound Repair Regen ; 26(3): 263-273, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-30120800

RESUMEN

While mammals cannot regenerate amputated limbs, mice and humans have regenerative ability restricted to amputations transecting the digit tip, including the terminal phalanx (P3). In mice, the regeneration process is epimorphic and mediated by the formation of a blastema comprised of undifferentiated proliferating cells that differentiate to regenerate the amputated structures. Blastema formation distinguishes the regenerative response from a scar-forming healing response. The mouse digit tip serves as a preclinical model to investigate mammalian blastema formation and endogenous regenerative capabilities. We report that P3 blastema formation initiates prior to epidermal closure and concurrent with the bone histolytic response. In this early healing response, proliferation and cells entering the early stages of osteogenesis are localized to the periosteal and endosteal bone compartments. After the completion of stump bone histolysis, epidermal closure is completed and cells associated with the periosteal and endosteal compartments blend to form the blastema proper. Osteogenesis associated with the periosteum occurs as a polarized progressive wave of new bone formation that extends from the amputated stump and restores skeletal length. Bone patterning is restored along the proximal-distal and medial digit axes, but is imperfect in the dorsal-ventral axis with the regeneration of excessive new bone that accounts for the enhanced regenerated bone volume noted in previous studies. Periosteum depletion studies show that this compartment is required for the regeneration of new bone distal to the original amputation plane. These studies provide evidence that blastema formation initiates early in the healing response and that the periosteum is an essential tissue for successful epimorphic regeneration in mammals.


Asunto(s)
Amputación Quirúrgica , Osteogénesis/fisiología , Periostio/metabolismo , Regeneración/fisiología , Medicina Regenerativa , Falanges de los Dedos del Pie/fisiología , Cicatrización de Heridas/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Inmunohistoquímica , Ratones , Ratones Endogámicos , Neovascularización Fisiológica , Falanges de los Dedos del Pie/lesiones
11.
Environ Sci Technol ; 52(4): 2162-2169, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29357232

RESUMEN

The recently developed three-step ternary halogenation model interprets the incorporation of chlorine, bromine, and iodine ions into natural organic matter (NOM) and formation of iodine-, bromine-, and chlorine-containing trihalomethanes (THMs) based on the competition of iodine, bromine, and chlorine species at each node of the halogenation sequence. This competition is accounted for using the dimensionless ratios (denoted as γ) of kinetic rates of reactions of the initial attack sites or halogenated intermediates with chlorine, bromine, and iodine ions. However, correlations between the model predictions made and mechanistic aspects of the incorporation of halogen species need to be ascertained in more detail. In this study, quantum chemistry calculations were first used to probe the formation mechanism of 10 species of Cl-/Br-/I- THMs. The HOMO energy (EHOMO) of each mono-, bi-, or trihalomethanes were calculated by B3LYP method in Gaussian 09 software. Linear correlations were found to exist between the logarithms of experimentally determined kinetic preference coefficients γ reported in prior research and, on the other hand, differences of EHOMO values between brominated/iodinated and chlorinated halomethanes. One notable exception from this trend was that observed for the incorporation of iodine into mono- and di-iodinated intermediates. These observations confirm the three-step halogen incorporation sequence and the factor γ in the statistical model. The combined use of quantum chemistry calculations and the ternary sequential halogenation model provides a new insight into the microscopic nature of NOM-halogen interactions and the trends seen in the behavior of γ factors incorporated in the THM speciation models.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Bromo , Cloro , Halogenación , Halógenos , Trihalometanos
12.
Environ Sci Technol ; 50(8): 4468-75, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27007081

RESUMEN

This study examined the effects of the iodide concentration and pH on yields and speciation of the entire group of 10 species of iodine-, bromine-, and chlorine-containing trihalomethanes (THMs) formed at pH values from 6.5 to 8.5 in chloraminated surface waters in the presence of bromide and iodide. Pathways of iodine, bromine, and chlorine incorporation in the active sites in dissolved organic matter (DOM) were examined on the basis of a ternary halogenation/THM speciation model. The model assumed the occurrence of sequential three-step halogenation of the active site and competition of iodine, bromine, and chlorine species at each node of the halogenation sequence. A comparison of experimentally measured and modeled speciation coefficients and also iodine and bromine incorporation factors calculated for 10 THM species showed that the developed approach was sufficient to closely model the observed trends. Interpretation of preferred iodine incorporation pathways associated with the generation of THMs in all examined conditions showed that the susceptibility of the halogenated intermediates to iodine incorporation increases rapidly with the number of iodine atoms that have already been incorporated into the reaction site. In contrast, the incorporation of bromine and chlorine atoms in the intermediates involved in the generation of THMs makes them largely inactive in iodine incorporation reactions. The presented approach allows for a further understanding of the mechanisms of DOM/halogen interactions and prediction of the speciation of THMs formed at varying pH values, iodide concentrations, and other system conditions.


Asunto(s)
Cloraminas/análisis , Modelos Químicos , Trihalometanos/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Bromo/química , Cloraminas/química , Cloro/química , Halogenación , Yodo/química , Trihalometanos/química , Contaminantes Químicos del Agua/química
13.
J Environ Sci (China) ; 42: 142-151, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27090705

RESUMEN

Finished drinking water usually contains some residual aluminum. The deposition of residual aluminum in distribution systems and potential release back to the drinking water could significantly influence the water quality at consumer taps. A preliminary analysis of aluminum content in cast iron pipe corrosion scales and loose deposits demonstrated that aluminum deposition on distribution pipe surfaces could be excessive for water treated by aluminum coagulants including polyaluminum chloride (PACl). In this work, the deposition features of different aluminum species in PACl were investigated by simulated coil-pipe test, batch reactor test and quartz crystal microbalance with dissipation monitoring. The deposition amount of non-polymeric aluminum species was the least, and its deposition layer was soft and hydrated, which indicated the possible formation of amorphous Al(OH)3. Al13 had the highest deposition tendency, and the deposition layer was rigid and much less hydrated, which indicated that the deposited aluminum might possess regular structure and self-aggregation of Al13 could be the main deposition mechanism. While for Al30, its deposition was relatively slower and deposited aluminum amount was relatively less compared with Al13. However, the total deposited mass of Al30 was much higher than that of Al13, which was attributed to the deposition of particulate aluminum matters with much higher hydration state. Compared with stationary condition, stirring could significantly enhance the deposition process, while the effect of pH on deposition was relatively weak in the near neutral range of 6.7 to 8.7.


Asunto(s)
Aluminio/química , Agua Potable/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Aluminio/análisis , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/análisis
14.
Environ Sci Technol ; 49(10): 5905-12, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25897866

RESUMEN

This study examined effects of variations of the ionic strength (IS) on the absorbance of dissolved organic matter (DOM). The measurements performed for DOM of allochthonous (Suwannee River humic and fulvic acids, SRHA and SRFA) and autochthonous (Pony Lake fulvic acid, PLFA) origin showed that increases of IS (which was controlled by additions of sodium perchlorate) from 0.001 to 0.3 mol/L were accompanied by increases of the absorbance of DOM. The extent of the increase of DOM absorbance observed at increasing IS was consistently greater at higher pH values, and it followed the order of PLFA < SRFA < SRHA. The absolute values of the spectral slopes of the log-processed absorbance spectra of DOM calculated for a 350 to 400 nm wavelength range decreased proportionally to the logarithm of IS values. This result was hypothesized to be indicative of the deprotonation of the DOM chromophores at increasing IS values, which was supported by model calculations showing that values of the spectral slopes were nearly linearly correlated with the extent of IS-induced deprotonation of the operationally defined phenolic groups in DOM.


Asunto(s)
Benzopiranos/análisis , Sustancias Húmicas/análisis , Ríos/química , Color , Concentración Osmolar
15.
Environ Sci Technol ; 49(14): 8323-9, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26090773

RESUMEN

Natural organic matter (NOM) generated in all niches of the environment constitutes a large fraction of the global pool of organic carbon while magnesium is one of the most abundant elements that has multiple roles in both biotic and abiotic processes. Although interactions between Mg(2+) and NOM have been recognized to affect many environmental processes, little is understood about relevant mechanisms and equilibria. This study addressed this deficiency and quantified Mg(2+)-NOM interactions using differential absorbance spectroscopy (DAS) in combination with the NICA-Donnan speciation model. DAS data were obtained for varying total Mg concentrations, pHs from 5.0 to 11.0 and ionic strengths from 0.001 to 0.3 mol L(-1). DAS results demonstrated the existence of strong interactions between magnesium and NOM at all examined conditions and demonstrated that the binding of Mg(2+) by NOM was accompanied by the replacement of protons in the protonation-active phenolic and carboxylic groups. The slope of the log-transformed absorbance spectra of NOM in the range of wavelength 350-400 nm was found to be indicative of the extent of Mg(2+)-NOM binding. The differential and absolute values of the spectral slopes were strongly correlated with the amount of NOM-bound Mg(2+) ions and with the concentrations of NOM-bound protons.


Asunto(s)
Magnesio/química , Compuestos Orgánicos/análisis , Ácidos Carboxílicos/análisis , Sustancias Húmicas/análisis , Iones , Concentración Osmolar , Protones , Espectrofotometría Ultravioleta
16.
Environ Sci Technol ; 49(22): 13542-9, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26496660

RESUMEN

This study examined the electrochemical (EC) reduction of monoiodoacetic acid (MIAA) and iodoform (CHI3), which are typical iodine-containing disinfection byproducts (I-DBPs). Experiments carried out using the method of a rotating ring-disk electrode (RRDE) with a gold working electrode showed that the reduction of CHI3 and MIAA is diffusion-controlled. The MIAA diffusion coefficient was determined to be (1.86 ± 0.24)·10(-5) cm(2) s(-1). The yield of the iodide ion formed as a result of MIAA or CHI3 reduction was affected by the presence of dissolved organic matter (DOM) and resorcinol. Increasing concentrations of DOM or resorcinol did not affect the EC reduction of the examined I-DBPs, but the formation of iodide was suppressed. This indicated that free iodine, ·I, was formed as a result of the first step in the EC reduction of MIAA and CHI3. This also indicated that the pathway of the EC reduction of MIAA and CHI3 was different from that typical for the reduction of Br- and Cl-containing DBPs, in which case Br(-) or Cl(-) tend to be formed as a result of the electron transfer. Quantum-chemical (QC) calculations confirmed the thermodynamic likelihood of and possible preference to the formation of free iodine species as a result of the EC reduction of MIAA, CHI3, and other I-DBPs.


Asunto(s)
Desinfección/métodos , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Hidrocarburos Yodados/química , Ácido Yodoacético/química , Electrodos , Diseño de Equipo , Yoduros/química , Modelos Químicos , Oxidación-Reducción , Teoría Cuántica , Resorcinoles/química , Termodinámica
17.
Environ Sci Technol ; 48(6): 3177-85, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24548240

RESUMEN

This study quantified the binding of dissolved organic matter (DOM) from Suwannee River with nine metals, Ca(II), Mg(II), Fe(III), Al(III), Cu(II), Cd(II), Cr(III), Eu(III), and Th(IV), using a differential absorbance approach. The differential spectra of DOM were closely fitted with six Gaussian bands that were present for all of the metals at varying pH values. Their maxima were located at ca. 200, 240, 276, 316, 385, and 547 nm (denoted as A0, A1, A2, A3, A4, and A5, respectively). The relative contributions and signs of the Gaussian bands were metal-specific and correlated to some degree with the covalent-bonding index of the ions and applicable complexation constants of the NICA-Donnan model. The intensity of band A4 was linearly proportional to the concentration of DOM-complexed metal, although these correlations formed two groups with different slopes, reflecting the nature of DOM-metal interactions. The results demonstrate that differential spectra yield results indicative of the nature and extent of metal and DOM interactions.


Asunto(s)
Sustancias Húmicas/análisis , Metales/análisis , Metales/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Colorantes/química , Complejos de Coordinación , Concentración de Iones de Hidrógeno , Ríos , Análisis Espectral
18.
Water Res ; 254: 121367, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38417268

RESUMEN

Differential absorption spectroscopy (DAS) quantifies changes in the UV-Visible absorbance of dissolved organic matter (DOM) caused by reactions of its chromophores. As a result of its precision and sensitvity, DAS serves as a powerful tool for characterizing the formation of disinfection by-products (DBPs) in generated in DOM chlorination reactions. However, the nonlinear relationship between the intensity of DAS and DBP concentrations as well as the need to develop site-specific fitting parameters limit its practical applications. This study investigated the physico-chemical nature of DAS of chlorinated DOM through experimental measurements and theoretical calculations. Results of this study provide molecular-level evidence that electrophilic substitution reactions involving DOM reactive sites result in the emergence of DAS feaures ascribed to the "fast" chromophores. The ring opening in the cyclic enones-like structures which can be present either in the original DOM or are generated as intermediates in its chlorination, leads to the emergence of DAS features associated with the "slow" chromophores and high yields of DBPs. The kinetic study of chlorination of real waters reveals a strong linear relationship (R2 > 0.91) between ln([DBP]) and the long-wavelength (λ > 325 nm) parameter of the DAS, notably (ln(-DA350)). This relationship varies among different water sources due to the differences in the heterogeneity of Band A3 whose maximum is near 350 nm. Band A3 is one of the Gaussian bands that comprise the overall UV-Visible spectrum of DOM. A new function (f(-DA350)) is proposed in this study to quantify DBP formation. This function, which is determined by the Band A3's area, allows establishing a universal linear relationship between f(-DA350) and ln([THMs]), as well as f(-DA350) and ln([HAAs]), across various water sources. The findings of this study will stimulate further development of spectroscopy-based DBP monitoring technology for monitoring and optimization of water disinfection processes.


Asunto(s)
Purificación del Agua , Purificación del Agua/métodos , Desinfección , Aminas , Agua/química
19.
Dev Biol ; 372(2): 263-73, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23041115

RESUMEN

Bone morphogenetic proteins (BMPs) are required for bone development, the repair of damage skeletal tissue, and the regeneration of the mouse digit tip. Previously we showed that BMP treatment can induce a regeneration response in mouse digits amputated at a proximal level of the terminal phalangeal element (P3) (Yu et al., 2010). In this study, we show that the regeneration-inductive ability of BMP2 extends to amputations at the level of the second phalangeal element (P2) of neonatal digits, and the hindlimb of adult limbs. In these models the induced regenerative response is restricted in a segment-specific manner, thus amputated skeletal elements regenerate distally patterned skeletal structures but does not form joints or more distal skeletal elements. Studies on P2 amputations indicate that BMP2-induced regeneration is associated with a localized proliferative response and the transient expression of established digit blastema marker genes. This is followed by the formation of a new endochondral ossification center at the distal end of the bone stump. The endochondral ossification center contains proliferating chondrocytes that establish a distal proliferative zone and differentiate proximally into hypertrophic chondrocytes. Skeletal regeneration occurs from proximal to distal with the appearance of osteoblasts that differentiate in continuity with the amputated stump. Using the polarity of the endochondral ossification centers induced by BMP2 at two different amputation levels, we show that BMP2 activates a level-dependent regenerative response indicative of a positional information network. In summary, our studies provide evidence that BMP2 induces the regeneration of mammalian limb structures by stimulating a new endochondral ossification center that utilizes an existing network of positional information to regulate patterning during skeletal regeneration.


Asunto(s)
Proteína Morfogenética Ósea 2/farmacología , Huesos/efectos de los fármacos , Miembro Posterior/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Regeneración/efectos de los fármacos , Amputación Quirúrgica , Animales , Huesos/citología , Huesos/lesiones , Huesos/fisiología , Condrogénesis/efectos de los fármacos , Miembro Posterior/citología , Miembro Posterior/lesiones , Miembro Posterior/fisiología , Ratones
20.
Development ; 137(4): 551-9, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20110320

RESUMEN

The regenerating digit tip of mice is a novel epimorphic response in mammals that is similar to fingertip regeneration in humans. Both display restricted regenerative capabilities that are amputation-level dependent. Using this endogenous regeneration model in neonatal mice, we have found that noggin treatment inhibits regeneration, thus suggesting a bone morphogenetic protein (BMP) requirement. Using non-regenerating amputation wounds, we show that BMP7 or BMP2 can induce a regenerative response. BMP-induced regeneration involves the formation of a mammalian digit blastema. Unlike the endogenous regeneration response that involves redifferentiation by direct ossification (evolved regeneration), the BMP-induced response involves endochondral ossification (redevelopment). Our evidence suggests that BMP treatment triggers a reprogramming event that re-initiates digit tip development at the amputation wound. These studies demonstrate for the first time that the postnatal mammalian digit has latent regenerative capabilities that can be induced by growth factor treatment.


Asunto(s)
Proteínas Morfogenéticas Óseas/fisiología , Regeneración/fisiología , Muñones de Amputación/fisiopatología , Animales , Animales Recién Nacidos , Secuencia de Bases , Proteína Morfogenética Ósea 2/farmacología , Proteína Morfogenética Ósea 7/farmacología , Proteínas Morfogenéticas Óseas/genética , Regeneración Ósea/efectos de los fármacos , Regeneración Ósea/genética , Regeneración Ósea/fisiología , Cartilla de ADN/genética , Extremidades/fisiología , Humanos , Hibridación in Situ , Ratones , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Osteogénesis/fisiología , Proteínas Recombinantes/farmacología , Regeneración/efectos de los fármacos , Regeneración/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA