RESUMEN
The emergence of Omicron lineages and descendent subvariants continues to present a severe threat to the effectiveness of vaccines and therapeutic antibodies. We have previously suggested that an insufficient mucosal immunoglobulin A (IgA) response induced by the mRNA vaccines is associated with a surge in breakthrough infections. Here, we further show that the intramuscular mRNA and/or inactivated vaccines cannot sufficiently boost the mucosal secretory IgA response in uninfected individuals, particularly against the Omicron variant. We thus engineered and characterized recombinant monomeric, dimeric, and secretory IgA1 antibodies derived from four neutralizing IgG monoclonal antibodies (mAbs 01A05, rmAb23, DXP-604, and XG014) targeting the receptor-binding domain of the spike protein. Compared to their parental IgG antibodies, dimeric and secretory IgA1 antibodies showed a higher neutralizing activity against different variants of concern (VOCs), in part due to an increased avidity. Importantly, the dimeric or secretory IgA1 form of the DXP-604 antibody significantly outperformed its parental IgG antibody, and neutralized the Omicron lineages BA.1, BA.2, and BA.4/5 with a 25- to 75-fold increase in potency. In human angiotensin converting enzyme 2 (ACE2) transgenic mice, a single intranasal dose of the dimeric IgA DXP-604 conferred prophylactic and therapeutic protection against Omicron BA.5. Thus, dimeric or secretory IgA delivered by nasal administration may potentially be exploited for the treatment and prevention of Omicron infection, thereby providing an alternative tool for combating immune evasion by the current circulating subvariants and, potentially, future VOCs.
Asunto(s)
Anticuerpos Monoclonales , Inmunoglobulina A Secretora , Animales , Ratones , Humanos , Inmunoglobulina G , Inmunoglobulina A , Administración Intranasal , Ratones TransgénicosRESUMEN
A comprehensive study of the B cell response against SARS-CoV-2 could be significant for understanding the immune response and developing therapeutical antibodies and vaccines. To define the dynamics and characteristics of the antibody repertoire following SARS-CoV-2 infection, we analyzed the mRNA transcripts of immunoglobulin heavy chain (IgH) repertoires of 24 peripheral blood samples collected between 3 and 111 days after symptom onset from 10 COVID-19 patients. Massive clonal expansion of naive B cells with limited somatic hypermutation (SHM) was observed in the second week after symptom onset. The proportion of low-SHM IgG clones strongly correlated with spike-specific IgG antibody titers, highlighting the significant activation of naive B cells in response to a novel virus infection. The antibody isotype switching landscape showed a transient IgA surge in the first week after symptom onset, followed by a sustained IgG elevation that lasted for at least 3 months. SARS-CoV-2 infection elicited poly-germ line reactive antibody responses. Interestingly, 17 different IGHV germ line genes recombined with IGHJ6 showed significant clonal expansion. By comparing the IgH repertoires that we sequenced with the 774 reported SARS-CoV-2-reactive monoclonal antibodies (MAbs), 13 shared spike-specific IgH clusters were found. These shared spike-specific IgH clusters are derived from the same lineage of several recently published neutralizing MAbs, including CC12.1, CC12.3, C102, REGN10977, and 4A8. Furthermore, identical spike-specific IgH sequences were found in different COVID-19 patients, suggesting a highly convergent antibody response to SARS-CoV-2. Our analysis based on sequencing antibody repertoires from different individuals revealed key signatures of the systemic B cell response induced by SARS-CoV-2 infection. IMPORTANCE Although the canonical delineation of serum antibody responses following SARS-CoV-2 infection has been well established, the dynamics of antibody repertoire at the mRNA transcriptional level has not been well understood, especially the correlation between serum antibody titers and the antibody mRNA transcripts. In this study, we analyzed the IgH transcripts and characterized the B cell clonal expansion and differentiation, isotype switching, and somatic hypermutation in COVID-19 patients. This study provided insights at the repertoire level for the B cell response after SARS-CoV-2 infection.
Asunto(s)
Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/genética , Linfocitos B/inmunología , COVID-19/genética , Inmunoglobulina G/genética , Receptores de Antígenos de Linfocitos B/genética , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Humanos , Inmunoglobulina G/inmunología , Receptores de Antígenos de Linfocitos B/inmunologíaRESUMEN
Coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with some patients developing severe illness or even death. Disease severity has been associated with increased levels of proinflammatory cytokines and lymphopenia. To elucidate the atlas of peripheral immune response and pathways that might lead to immunopathology during COVID-19 disease course, we performed a peripheral blood RNA sequencing analysis of the same patient's samples collected from symptom onset to full recovery. We found that PBMCs at different disease stages exhibited unique transcriptome characteristics. We observed that SARS-CoV-2 infection caused excessive release of inflammatory cytokines and lipid mediators as well as an aberrant increase of low-density neutrophils. Further analysis revealed an increased expression of RNA sensors and robust IFN-stimulated genes expression but a repressed type I IFN production. SARS-CoV-2 infection activated T and B cell responses during the early onset but resulted in transient adaptive immunosuppression during severe disease state. Activation of apoptotic pathways and functional exhaustion may contribute to the reduction of lymphocytes and dysfunction of adaptive immunity, whereas increase in IL2, IL7, and IL15 may facilitate the recovery of the number and function of lymphocytes. Our study provides comprehensive transcriptional signatures of peripheral blood response in patients with moderate COVID-19.
Asunto(s)
COVID-19/sangre , Citocinas/sangre , Progresión de la Enfermedad , Mediadores de Inflamación/sangre , Leucocitos Mononucleares/metabolismo , RNA-Seq , SARS-CoV-2/metabolismo , Adulto , Anciano , Femenino , Regulación de la Expresión Génica , Humanos , Leucocitos Mononucleares/virología , Estudios Longitudinales , Masculino , Persona de Mediana EdadRESUMEN
Neutralizing antibodies are a key component in protective humoral immunity against SARS-CoV-2. Currently, available technologies cannot track epitope-specific antibodies in global antibody repertoires. Thus, the comprehensive repertoire of spike-specific neutralizing antibodies elicited by SARS-CoV-2 infection is not fully understood. We therefore combined high-throughput immunoglobulin heavy chain (IgH) repertoire sequencing, and structural and bioinformatics analysis to establish an antibodyomics pipeline, which enables tracking spike-specific antibody lineages that target certain neutralizing epitopes. We mapped the neutralizing epitopes on the spike and determined the epitope-preferential antibody lineages. This analysis also revealed numerous overlaps between immunodominant neutralizing antibody-binding sites and mutation hotspots on spikes as observed so far in SARS-CoV-2 variants. By clustering 2677 spike-specific antibodies with 360 million IgH sequences that we sequenced, a total of 329 shared spike-specific antibody clonotypes were identified from 33 COVID-19 convalescents and 24 SARS-CoV-2-naïve individuals. Epitope mapping showed that the shared antibody responses target not only neutralizing epitopes on RBD and NTD but also non-neutralizing epitopes on S2. The immunodominance of neutralizing antibody response is determined by the occurrence of specific precursors in human naïve B-cell repertoires. We identified that only 28 out of the 329 shared spike-specific antibody clonotypes persisted for at least 12 months. Among them, long-lived IGHV3-53 antibodies are likely to evolve cross-reactivity to Omicron variants through accumulating somatic hypermutations. Altogether, we created a comprehensive atlas of spike-targeting antibody lineages in COVID-19 convalescents and antibody precursors in human naïve B cell repertoires, providing a valuable reference for future vaccine design and evaluation.
Asunto(s)
Ascomicetos , COVID-19 , Humanos , SARS-CoV-2/genética , Anticuerpos Neutralizantes , Epítopos , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genéticaRESUMEN
Continued evolution of SARS-CoV-2 generates variants to challenge antibody immunity established by infection and vaccination. A connection between population immunity and genesis of virus variants has long been suggested but its molecular basis remains poorly understood. Here, we identify a class of SARS-CoV-2 neutralizing public antibodies defined by their shared usage of VL6-57 light chains. Although heavy chains of diverse genotypes are utilized, convergent HCDR3 rearrangements have been observed among these public antibodies to cooperate with germline VL6-57 LCDRs to target a convergent epitope defined by RBD residues S371-S373-S375. Antibody repertoire analysis identifies that this class of VL6-57 antibodies is present in SARS-CoV-2-naive individuals and is clonally expanded in most COVID-19 patients. We confirm that Omicron-specific substitutions at S371, S373 and S375 mediate escape of antibodies of the VL6-57 class. These findings support that this class of public antibodies constitutes a potential immune pressure promoting the introduction of S371L/F-S373P-S375F in Omicron variants. The results provide further molecular evidence to support that antigenic evolution of SARS-CoV-2 is driven by antibody mediated population immunity.
Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Epítopos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Humanos , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/inmunología , COVID-19/virología , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/inmunología , Epítopos/inmunología , Epítopos/genética , Cadenas Ligeras de Inmunoglobulina/genética , Cadenas Ligeras de Inmunoglobulina/inmunologíaRESUMEN
To combat SARS-CoV-2 variants and MERS-CoV, as well as the potential re-emergence of SARS-CoV and spillovers of sarbecoviruses, which pose a significant threat to global public health, vaccines that can confer broad-spectrum protection against betacoronaviruses (ß-CoVs) are urgently needed. A mosaic ferritin nanoparticle vaccine is developed that co-displays the spike receptor-binding domains of SARS-CoV, MERS-CoV, and SARS-CoV-2 Wild-type (WT) strain and evaluated its immunogenicity and protective efficacy in mice and nonhuman primates. A low dose of 10 µg administered at a 21-day interval induced a Th1-biased immune response in mice and elicited robust cross-reactive neutralizing antibody responses against a variety of ß-CoVs, including a series of SARS-CoV-2 variants. It is also able to effectively protect against challenges of SARS-CoV, MERS-CoV, and SARS-CoV-2 variants in not only young mice but also the more vulnerable mice through induction of long-lived immunity. Together, these results suggest that this mosaic 3-RBD nanoparticle has the potential to be developed as a pan-ß-CoV vaccine.
Asunto(s)
Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Nanopartículas , Vacunas Virales , Humanos , Animales , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Coronavirus/prevención & control , SARS-CoV-2 , Coronavirus del Síndrome Respiratorio de Oriente Medio/química , Modelos AnimalesRESUMEN
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein continues to evolve antigenically, impacting antibody immunity. D1F6, an affinity-matured non-stereotypic VH1-2 antibody isolated from a patient infected with the SARS-CoV-2 ancestral strain, effectively neutralizes most Omicron variants tested, including XBB.1.5. We identify that D1F6 in the immunoglobulin G (IgG) form is able to overcome the effect of most Omicron mutations through its avidity-enhanced multivalent S-trimer binding. Cryo-electron microscopy (cryo-EM) and biochemical analyses show that three simultaneous epitope mutations are generally needed to substantially disrupt the multivalent S-trimer binding by D1F6 IgG. Antigenic mutations at spike positions 346, 444, and 445, which appeared in the latest variants, have little effect on D1F6 binding individually. However, these mutations are able to act synergistically with earlier Omicron mutations to impair neutralization by affecting the interaction between D1F6 IgG and the S-trimer. These results provide insight into the mechanism by which accumulated antigenic mutations facilitate evasion of affinity-matured antibodies.
Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Mutación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/inmunología , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Humanos , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/inmunología , COVID-19/virología , COVID-19/inmunología , Epítopos/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Microscopía por Crioelectrón , Unión ProteicaRESUMEN
Omicron, as the emerging variant with enhanced vaccine tolerance, has sharply disrupted most therapeutic antibodies. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to the subgenus Sarbecovirus, members of which share high sequence similarity. Herein, we report one sarbecovirus antibody, 5817, which has broad-spectrum neutralization capacity against SARS-CoV-2 variants of concern (VOCs) and SARS-CoV, as well as related bat and pangolin viruses. 5817 can hardly compete with six classes of receptor-binding-domain-targeted antibodies grouped by structural classifications. No obvious impairment in the potency is detected against SARS-CoV-2 Omicron and subvariants. The cryoelectron microscopy (cryo-EM) structure of neutralizing antibody 5817 in complex with Omicron spike reveals a highly conserved epitope, only existing at the receptor-binding domain (RBD) open state. Prophylactic and therapeutic administration of 5817 potently protects mice from SARS-CoV-2 Beta, Delta, Omicron, and SARS-CoV infection. This study reveals a highly conserved cryptic epitope targeted by a broad sarbecovirus neutralizing antibody, which would be beneficial to meet the potential threat of pre-emergent SARS-CoV-2 VOCs.
Asunto(s)
Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Animales , Ratones , Anticuerpos ampliamente neutralizantes , Microscopía por Crioelectrón , Anticuerpos Neutralizantes , Epítopos , Anticuerpos AntiviralesRESUMEN
SARS-CoV-2 spike protein (S) is structurally dynamic and has been observed by cryo-EM to adopt a variety of prefusion conformations that can be categorized as locked, closed, and open. S-trimers adopting locked conformations are tightly packed featuring structural elements incompatible with RBD in the "up" position. For SARS-CoV-2 S, it has been shown that the locked conformations are transient under neutral pH. Probably because of their transience, locked conformations remain largely uncharacterized for SARS-CoV-1 S. In this study, we introduced x1, x2, and x3 disulfides into SARS-CoV-1 S. Some of these disulfides have been shown to preserve rare locked conformations when introduced to SARS-CoV-2 S. Introduction of these disulfides allowed us to image a variety of locked and other rare conformations for SARS-CoV-1 S by cryo-EM. We identified bound cofactors and structural features that are associated with SARS-CoV-1 S locked conformations. We compare newly determined structures with other available spike structures of SARS-related CoVs to identify conserved features and discuss their possible functions.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Disulfuros/química , Microscopía por Crioelectrón , Modelos MolecularesRESUMEN
SARS-CoV-2 Omicron variants feature highly mutated spike proteins with extraordinary abilities in evading antibodies isolated earlier in the pandemic. Investigation of memory B cells from patients primarily with breakthrough infections with the Delta variant enables isolation of a number of neutralizing antibodies cross-reactive to heterologous variants of concern (VOCs) including Omicron variants (BA.1-BA.4). Structural studies identify altered complementarity determining region (CDR) amino acids and highly unusual heavy chain CDR2 insertions respectively in two representative cross-neutralizing antibodies-YB9-258 and YB13-292. These features are putatively introduced by somatic hypermutation and they are heavily involved in epitope recognition to broaden neutralization breadth. Previously, insertions/deletions were rarely reported for antiviral antibodies except for those induced by HIV-1 chronic infections. These data provide molecular mechanisms for cross-neutralization of heterologous SARS-CoV-2 variants by antibodies isolated from Delta variant infected patients with implications for future vaccination strategy.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del CoronavirusRESUMEN
ABSTRACTHIV-1 latency posts a major obstacle for HIV-1 eradication. Currently, no desirable latency reversing agents (LRAs) have been implicated in the "Shock and Kill" strategy to mobilize the latently infected cells to be susceptible for clearance by immune responses. Identification of key cellular pathways that modulate HIV-1 latency helps to develop efficient LRAs. In this study, we demonstrate that the Wnt downstream ß-catenin/TCF1 pathway is a crucial modulator for HIV-1 latency. The pharmacological activation of the ß-catenin/TCF1 pathway with glycogen synthase kinase-3 (GSK3) inhibitors promoted transcription of HIV-1 proviral DNA and reactivated latency in CD4+ T cells; the GSK3 kinase inhibitor 6-bromoindirubin-3'-oxime (6-BIO)-induced HIV-1 reactivation was subsequently confirmed in resting CD4+ T cells from cART-suppressed patients and SIV-infected rhesus macaques. These findings advance our understanding of the mechanisms responsible for viral latency, and provide the potent LRA that can be further used in conjunction of immunotherapies to eradicate viral reservoirs.
Asunto(s)
Linfocitos T CD4-Positivos/virología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , VIH-1/crecimiento & desarrollo , Indoles/farmacología , Oximas/farmacología , Activación Viral/efectos de los fármacos , Latencia del Virus/efectos de los fármacos , Animales , Linfocitos T CD4-Positivos/inmunología , Línea Celular Tumoral , VIH-1/efectos de los fármacos , VIH-1/genética , Células HeLa , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Humanos , Macaca mulatta , Transcripción Genética/efectos de los fármacos , Células U937 , Activación Viral/genética , Latencia del Virus/genética , Proteínas Wnt/metabolismo , beta Catenina/metabolismoRESUMEN
COVID-19 is an immune-mediated inflammatory disease caused by SARS-CoV-2 infection, the combination of anti-inflammatory and antiviral therapy is predicted to provide clinical benefits. We recently demonstrated that mast cells (MCs) are an essential mediator of SARS-CoV-2-initiated hyperinflammation. We also showed that spike protein-induced MC degranulation initiates alveolar epithelial inflammation for barrier disruption and suggested an off-label use of antihistamines as MC stabilizers to block degranulation and consequently suppress inflammation and prevent lung injury. In this study, we emphasized the essential role of MCs in SARS-CoV-2-induced lung lesions in vivo, and demonstrated the benefits of co-administration of antihistamines and antiviral drug remdesivir in SARS-CoV-2-infected mice. Specifically, SARS-CoV-2 spike protein-induced MC degranulation resulted in alveolar-capillary injury, while pretreatment of pulmonary microvascular endothelial cells with antihistamines prevented adhesion junction disruption; predictably, the combination of antiviral drug remdesivir with the antihistamine loratadine, a histamine receptor 1 (HR1) antagonist, dampened viral replication and inflammation, thereby greatly reducing lung injury. Our findings emphasize the crucial role of MCs in SARS-CoV-2-induced inflammation and lung injury and provide a feasible combination antiviral and anti-inflammatory therapy for COVID-19 treatment.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Lesión Pulmonar , Enfermedades de los Roedores , Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/veterinaria , Células Endoteliales , Antagonistas de los Receptores Histamínicos/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/etiología , Inflamación/veterinaria , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/veterinaria , Ratones , Enfermedades de los Roedores/tratamiento farmacológico , SARS-CoV-2 , Glicoproteína de la Espiga del CoronavirusRESUMEN
SARS-CoV-2 variants continue to emerge facing established herd immunity. L452R, previously featured in the Delta variant, quickly emerged in Omicron subvariants, including BA.4/BA.5, implying a continued selection pressure on this residue. The underlying links between spike mutations and their selective pressures remain incompletely understood. Here, by analyzing 221 structurally characterized antibodies, we found that IGHV1-69-encoded antibodies preferentially contact L452 using germline-encoded hydrophobic residues at the tip of HCDR2 loop. Whereas somatic hypermutations or VDJ rearrangements are required to acquire L452-contacting hydrophobic residues for non-IGHV1-69 encoded antibodies. Antibody repertoire analysis revealed that IGHV1-69 L452-contacting antibody lineages are commonly induced among COVID-19 convalescents but non-IGHV1-69 encoded antibodies exhibit limited prevalence. In addition, we experimentally demonstrated that L452R renders most published IGHV1-69 antibodies ineffective. Furthermore, we found that IGHV1-69 L452-contacting antibodies are enriched in convalescents experienced Omicron BA.1 (without L452R) breakthrough infections but rarely found in Delta (with L452R) breakthrough infections. Taken together, these findings support that IGHV1-69 population antibodies contribute to selection pressure for L452 substitution. This study thus provides a better understanding of SARS-CoV-2 variant genesis and immune evasion.
Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Humanos , SARS-CoV-2/genética , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genéticaRESUMEN
The identification of a novel class of shark-derived single domain antibodies, named vnarbodies that show picomolar affinities binding to the receptor binding domain (RBD) of Wuhan and Alpha, Beta, Kappa, Delta, Delta-plus, and Lambda variants, is reported. Vnarbody 20G6 and 17F6 have broad neutralizing activities against all these SARS-CoV-2 viruses as well as other sarbecoviruses, including Pangolin coronavirus and Bat coronavirus. Intranasal administration of 20G6 effectively protects mice from the challenges of SARS-CoV-2 Wuhan and Beta variants. 20G6 and 17F6 contain a unique "WXGY" motif in the complementary determining region 3 that binds to a hidden epitope on RBD, which is highly conserved in sarbecoviruses through a novel ß-sheet interaction. It is found that the S375F mutation on Omicron RBD disrupts the structure of ß-strand, thus impair the binding with 20G6. The study demonstrates that shark-derived vnarbodies offer a prophylactic and therapeutic option against most SARS-CoV-2 variants and provide insights into antibody evasion by the Omicron variant.
Asunto(s)
COVID-19 , Tiburones , Anticuerpos de Dominio Único , Animales , Ratones , Pruebas de Neutralización , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genéticaRESUMEN
Population antibody response is thought to be important in selection of virus variants. We report that SARS-CoV-2 infection elicits a population immune response that is mediated by a lineage of VH1-69 germline antibodies. A representative antibody R1-32 from this lineage was isolated. By cryo-EM, we show that it targets a semi-cryptic epitope in the spike receptor-binding domain. Binding to this non-ACE2 competing epitope results in spike destruction, thereby inhibiting virus entry. On the basis of epitope location, neutralization mechanism and analysis of antibody binding to spike variants, we propose that recurrent substitutions at 452 and 490 are associated with immune evasion of the identified population antibody response. These substitutions, including L452R (present in the Delta variant), disrupt interactions mediated by the VH1-69-specific hydrophobic HCDR2 to impair antibody-antigen association, enabling variants to escape. The first Omicron variants were sensitive to antibody R1-32 but subvariants that harbour L452R quickly emerged and spread. Our results provide insights into how SARS-CoV-2 variants emerge and evade host immune responses.
Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Formación de Anticuerpos , Epítopos/genética , Humanos , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismoRESUMEN
SARS-CoV-2 infection-induced hyper-inflammation links to the acute lung injury and COVID-19 severity. Identifying the primary mediators that initiate the uncontrolled hypercytokinemia is essential for treatments. Mast cells (MCs) are strategically located at the mucosa and beneficially or detrimentally regulate immune inflammations. In this study, we showed that SARS-CoV-2-triggered MC degranulation initiated alveolar epithelial inflammation and lung injury. SARS-CoV-2 challenge induced MC degranulation in ACE-2 humanized mice and rhesus macaques, and a rapid MC degranulation could be recapitulated with Spike-RBD binding to ACE2 in cells; MC degranulation altered various signaling pathways in alveolar epithelial cells, particularly, the induction of pro-inflammatory factors and consequential disruption of tight junctions. Importantly, the administration of clinical MC stabilizers for blocking degranulation dampened SARS-CoV-2-induced production of pro-inflammatory factors and prevented lung injury. These findings uncover a novel mechanism for SARS-CoV-2 initiating lung inflammation, and suggest an off-label use of MC stabilizer as immunomodulators for COVID-19 treatments.
Asunto(s)
COVID-19/metabolismo , Degranulación de la Célula , Lesión Pulmonar/metabolismo , Mastocitos/metabolismo , Alveolos Pulmonares/metabolismo , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/genética , Línea Celular Tumoral , Femenino , Humanos , Lesión Pulmonar/genética , Lesión Pulmonar/virología , Macaca mulatta , Masculino , Ratones Endogámicos BALB C , Ratones Transgénicos , Alveolos Pulmonares/virología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismoRESUMEN
Zika virus (ZIKV) infection during pregnancy causes congenital defects such as fetal microcephaly. Monoclonal antibodies (MAbs) against the nonstructural protein 1 (NS1) have the potential to suppress ZIKV pathogenicity without enhancement of disease, but the pathways through which they confer protection remain obscure. Here, we report two types of NS1-targeted human MAbs that inhibit ZIKV infection through distinct mechanisms. MAbs 3G2 and 4B8 show a better efficacy than MAb 4F10 in suppressing ZIKV infection in C57BL/6 neonatal mice. Unlike MAb 4F10 that mainly triggers antibody-dependent cell-mediated cytotoxicity (ADCC), MAbs 3G2 and 4B8 not only trigger ADCC but inhibit ZIKV infection without Fcγ receptor-bearing effector cells, possibly at postentry stages. Destroying the Fc-mediated effector function of MAbs 3G2 and 4B8 reduces but does not abolish their protective effects, whereas destroying the effector function of MAb 4F10 eliminates the protective effects, suggesting that MAbs 3G2 and 4B8 engage both Fcγ receptor-dependent and -independent pathways. Further analysis reveals that MAbs 3G2 and 4B8 target the N-terminal region of NS1 protein, whereas MAb 4F10 targets the C-terminal region, implying that the protective efficacy of an NS1-targeted MAb may be associated with its epitope recognition. Our results illustrate that NS1-targeted MAbs have multifaceted protective effects and provide insights for the development of NS1-based vaccines and therapeutics.IMPORTANCE Zika virus (ZIKV) is a mosquito-borne flavivirus that has been linked to congenital microcephaly during recent epidemics. No licensed antiviral drug or vaccine is available. Monoclonal antibodies (MAbs) against the nonstructural protein 1 (NS1) inhibit ZIKV pathogenicity but do not enhance the disease as envelope protein-targeted MAbs do. However, the protection mechanisms are not fully understood. Here, we show that in the presence or absence of Fcγ receptor-bearing effector cells, NS1-targeted human MAbs 3G2 and 4B8 inhibit ZIKV infection. Compared to MAb 4F10 that has no inhibitory effects without effector cells, 3G2 and 4B8 confer better protection in ZIKV-infected neonatal mice. Destroying the Fc-mediated effector function reduces but does not abolish the protection of 3G2 and 4B8, suggesting that they engage both Fcγ receptor-dependent and -independent pathways. The protective efficacy of NS1-targeted MAbs may be associated with their epitope recognition. Our findings will help to develop NS1-based vaccines and therapeutics.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Receptores de IgG/inmunología , Proteínas no Estructurales Virales/inmunología , Infección por el Virus Zika/prevención & control , Virus Zika/inmunología , Animales , Animales Recién Nacidos , Anticuerpos Neutralizantes/inmunología , Sitios de Unión de Anticuerpos , Carboxiliasas , Epítopos/inmunología , Femenino , Humanos , Redes y Vías Metabólicas/inmunología , Ratones , Ratones Endogámicos C57BL , Receptores de IgG/metabolismo , Virus Zika/química , Infección por el Virus Zika/inmunologíaRESUMEN
Monoclonal antibodies (mAbs) encoded by IGHV3-53 (VH3-53) targeting the spike receptor-binding domain (RBD) have been isolated from different COVID-19 patients. However, the existence and prevalence of shared VH3-53-encoded antibodies in the antibody repertoires is not clear. Using antibody repertoire sequencing, we found that the usage of VH3-53 increased after SARS-CoV-2 infection. A highly shared VH3-53-J6 clonotype was identified in 9 out of 13 COVID-19 patients. This clonotype was derived from convergent gene rearrangements with few somatic hypermutations and was evolutionary conserved. We synthesized 34 repertoire-deduced novel VH3-53-J6 heavy chains and paired with a common IGKV1-9 light chain to produce recombinant mAbs. Most of these recombinant mAbs (23/34) possess RBD binding and virus-neutralizing activities, and recognize ACE2 binding site via the same molecular interface. Our computational analysis, validated by laboratory experiments, revealed that VH3-53 antibodies targeting RBD are commonly present in COVID-19 patients' antibody repertoires, indicating many people have germline-like precursor sequences to rapidly generate SARS-CoV-2 neutralizing antibodies. Moreover, antigen-specific mAbs can be digitally obtained through antibody repertoire sequencing and computational analysis.
Asunto(s)
Anticuerpos Monoclonales/sangre , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/inmunología , SARS-CoV-2/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales/inmunología , Secuencia de Bases , COVID-19/sangre , Estudios de Casos y Controles , Epítopos de Linfocito B , Femenino , Células HEK293 , Humanos , Masculino , Persona de Mediana Edad , Modelos Moleculares , Filogenia , Conformación Proteica , Receptores de Antígenos de Linfocitos B/genéticaRESUMEN
Recent studies have highlighted observations regarding re-tested positivity (RP) of SARS-CoV-2 RNA in discharged COVID-19 patients, however, the immune mechanisms underlying SARS-CoV-2 RNA RP in immunocompetent patients remain elusive. Herein, we describe the case of an immunocompetent COVID-19 patient with moderate symptoms who was twice re-tested as positive for SARS-CoV-2 RNA, and the period between first and third viral RNA positivity was 95 days, longer than previously reported (18-25 days). The chest computed tomography findings, plasma anti-SARS-CoV-2 antibody, neutralizing antibodies (NAbs) titer, and whole blood transcriptic characteristics in the viral RNA RP patient and other COVID-19 patients were analyzed. During the SARS-CoV-2 RNA RP period, new lung lesions were observed. The COVID-19 patient with viral RNA RP had delayed seroconversion of anti-spike/receptor-binding domain (RBD) IgA antibody and NAbs and were accompanied with disappearance of the lung lesions. Further experimental data validated that NAbs titer was significantly associated with anti-RBD IgA and IgG, and anti-spike IgG. The RP patient had lower interferon-, T cells- and B cell-related genes expression than non-RP patients with mild-to-moderate symptoms, and displayed lower cytokines and chemokines gene expression than severe patients. Interestingly, the RP patient had low expression of antigen presentation-related genes and low B cell counts which might have contributed to the delayed anti-RBD specific antibody and low CD8+ cell response. Collectively, delayed antigen presentation-related gene expression was found related to delayed adaptive immune response and contributed to the SARS-CoV-2 RNA RP in this described immunocompetent patient.
Asunto(s)
COVID-19/inmunología , COVID-19/virología , ARN Viral/aislamiento & purificación , Inmunidad Adaptativa , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/diagnóstico , Proteínas de la Nucleocápside de Coronavirus/inmunología , Perfilación de la Expresión Génica , Humanos , Inmunidad Innata , Masculino , Persona de Mediana Edad , Fosfoproteínas/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Seroconversión , Glicoproteína de la Espiga del Coronavirus/inmunologíaRESUMEN
[This corrects the article .].