Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FEBS J ; 288(9): 2888-2910, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33205541

RESUMEN

Poly (ADP-ribose) polymerase 1 (PARP1) and polycomb-repressive complex 2 (PRC2) are each known for their individual roles in cancer, but their cooperative roles have only been studied in the DNA damage repair process in the context of BRCA-mutant cancers. Here, we show that simultaneous inhibition of PARP1 and PRC2 in the MDA-MB-231 BRCA-proficient triple-negative breast cancer (TNBC) cell line leads to a synthetic viability independent of the mechanisms of DNA damage repair. Specifically, we find that either genetic depletion or pharmacological inhibition of both PARP1 and PRC2 can accelerate tumor growth rate. We attribute this to modifications in the tumor microenvironment (TME) that are induced by double-depleted breast cancer cells, such as promoting intratumoral angiogenesis and increasing the proportion of tumor-promoting type 2 (M2) macrophages. These changes subsequently inhibit cell death and promote proliferation. Mechanistically, we find that PARP1 and PRC2 double depletion induces not only a basal activation of the NF-κB pathway but also a maximal activation of NF-κB within the TME in response to external stimuli such as hypoxia and the presence of macrophages. In summary, our study reveals an unprecedented synthetic viable interaction between PARP1 and PRC2 in BRCA-proficient TNBC and identifies NF-κB as the downstream mediator. DATABASE: RNA-seq data are available in the GEO databases under the accession GSE142769.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Complejo Represivo Polycomb 2/genética , Neoplasias de la Mama Triple Negativas/genética , Animales , Proteína BRCA1/genética , Línea Celular Tumoral , Proliferación Celular/genética , Daño del ADN/genética , Reparación del ADN/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Ratones , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral/genética , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Cancer Lett ; 521: 294-307, 2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34416337

RESUMEN

The deregulation of polypeptide N-acetyl-galactosaminyltransferases (GALNTs) contributes to several cancers, but their roles in lung cancer remain unclear. In this study, we have identified a tumor-suppressing role of GALNT3 in lung cancer. We found that GALNT3 suppressed lung cancer development and progression in both xenograft and syngeneic mouse models. Specifically, GALNT3 suppressed lung cancer initiation by inhibiting the self-renewal of lung cancer cells. More importantly, GALNT3 attenuated lung cancer growth by preventing the creation of a favorable tumor microenvironment (TME), which was attributed to GALNT3's ability to inhibit myeloid-derived suppressor cell (MDSC) infiltration into tumor sites and subsequent angiogenesis. We also identified a GALNT3-regulated gene (GRG) signature and found that lung cancer patients whose tumors exhibit the GRG signature showed more favorable prognoses. Further investigation revealed that GALNT3 suppressed lung cancer cell self-renewal by reducing ß-catenin levels, which led to reduced expression of the downstream targets of the WNT pathway. In addition, GALNT3 inhibited MDSC infiltration into tumor sites by suppressing both the TNFR1-NFκB and cMET-pAKT pathways. Specifically, GALNT3 inhibited the nuclear localization of NFκB and the c-MET-induced phosphorylation of AKT. This then led to reduced production of CXCL1, a chemokine required for MDSC recruitment. Finally, we confirmed that the GALNT3-induced inhibition of the TNFR1-NFκB and cMET-pAKT pathways involved the O-GalNAcylation of the TNFR1 and cMET receptors. In summary, we have identified GALNT3 as the first GALNT member capable of suppressing lung cancer and uncovered a novel mechanism by which GALNT3 regulates the TME.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA