Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Intervalo de año de publicación
1.
J Chem Phys ; 152(12): 120902, 2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32241145

RESUMEN

The past two decades have witnessed increasingly rapid advances in the field of single-molecule electronics, which are expected to overcome the limitation of the miniaturization of silicon-based microdevices, thus promoting the development of device manufacturing technologies and characterization means. In addition to this, they can enable us to investigate the intrinsic properties of materials at the atomic- or molecular-length scale and probe new phenomena that are inaccessible in ensemble experiments. In this perspective, we start from a brief introduction on the manufacturing method of graphene-molecule-graphene single-molecule junctions (GMG-SMJs). Then, we make a description on the remarkable functions of GMG-SMJs, especially on the investigation of single-molecule charge transport and dynamics. Finally, we conclude by discussing the main challenges and future research directions of molecular electronics.

2.
Sci Adv ; 10(28): eado1125, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996014

RESUMEN

Chirality is an important aspect of nature, and numerous macroscopic methods have been developed to understand and control chirality. For the chiral tertiary amines, their flexible flipping process makes it possible to achieve high chiral controllability without bond formation and breaking. Here, we present a type of stable chiral single-molecule devices formed by tertiary amines, using graphene-molecule-graphene single-molecule junctions. These single-molecule devices allow real-time, in situ, and long-time measurements of the flipping process of an individual chiral nitrogen center with high temporal resolution. Temperature- and bias voltage-dependent experiments, along with theoretical investigations, revealed diverse chiral intermediates, indicating the regulation of the flipping dynamics by energy-related factors. Angle-dependent measurements further demonstrated efficient enrichment of chiral states using linearly polarized light by a symmetry-related factor. This approach offers a reliable means for understanding the chirality's origin, elucidating microscopic chirality regulation mechanisms, and aiding in the design of effective drugs.

3.
Nat Nanotechnol ; 19(7): 978-985, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38448520

RESUMEN

Free radicals, generally formed through the cleavage of covalent electron-pair bonds, play an important role in diverse fields ranging from synthetic chemistry to spintronics and nonlinear optics. However, the characterization and regulation of the radical state at a single-molecule level face formidable challenges. Here we present the detection and sophisticated tuning of the open-shell character of individual diradicals with a donor-acceptor structure via a sensitive single-molecule electrical approach. The radical is sandwiched between nanogapped graphene electrodes via covalent amide bonds to construct stable graphene-molecule-graphene single-molecule junctions. We measure the electrical conductance as a function of temperature and track the evolution of the closed-shell and open-shell electronic structures in real time, the open-shell triplet state being stabilized with increasing temperature. Furthermore, we tune the spin states by external stimuli, such as electrical and magnetic fields, and extract thermodynamic and kinetic parameters of the transition between closed-shell and open-shell states. Our findings provide insights into the evolution of single-molecule radicals under external stimuli, which may proof instrumental for the development of functional quantum spin-based molecular devices.

4.
Nat Protoc ; 18(6): 1958-1978, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37045993

RESUMEN

The ability to measure the behavior of a single molecule during a reaction implies the detection of inherent dynamic and static disordered states, which may not be represented when measuring ensemble averages. Here, we describe the building of devices with graphene-molecule-graphene single-molecule junctions integrated into an electrical circuit. These devices are simple to build and are stable, showing tolerance to mechanical changes, solution environment and voltage stimulation. The design of a conductive channel based on a single molecule enables single-molecule detection and is sensitive to variations in physical properties and chemical structures of the detected molecules. The on-chip setup of single-molecule junctions further offers complementary metal-oxide-semiconductor (CMOS) compatibility, enabling logic functions in circuit elements, as well as deciphering of reaction intermediates. We detail the experimental procedure to prepare graphene transistor arrays as a basis for single-molecule junctions and the preparation of nanogapped carboxyl-terminal graphene electrodes by using electron-beam lithography and oxygen plasma etching. We describe the basic design of a molecular bridge with desired functions and terminals to form covalent bonds with electrode arrays, via a chemical reaction, to construct stably integrated single-molecule devices with a yield of 30-50% per chip. The immobilization of the single molecules is then characterized by using inelastic electron tunneling spectra, single-molecule imaging and fluorescent spectra. The whole protocol can be implemented within 2 weeks and requires users trained in using ultra-clean laboratory facilities and the aforementioned instrumentation.


Asunto(s)
Grafito , Grafito/química , Nanotecnología/métodos , Electrodos , Análisis de Secuencia por Matrices de Oligonucleótidos , Electrónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA