Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.073
Filtrar
1.
Cell ; 166(3): 755-765, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27372738

RESUMEN

To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC. VIDEO ABSTRACT.


Asunto(s)
Proteínas de Neoplasias/genética , Neoplasias Quísticas, Mucinosas y Serosas/genética , Neoplasias Ováricas/genética , Proteoma , Acetilación , Inestabilidad Cromosómica , Reparación del ADN , ADN de Neoplasias , Femenino , Dosificación de Gen , Humanos , Espectrometría de Masas , Fosfoproteínas/genética , Procesamiento Proteico-Postraduccional , Análisis de Supervivencia
2.
Mol Cell ; 82(4): 833-851.e11, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35180428

RESUMEN

HOTTIP lncRNA is highly expressed in acute myeloid leukemia (AML) driven by MLL rearrangements or NPM1 mutations to mediate HOXA topologically associated domain (TAD) formation and drive aberrant transcription. However, the mechanism through which HOTTIP accesses CCCTC-binding factor (CTCF) chromatin boundaries and regulates CTCF-mediated genome topology remains unknown. Here, we show that HOTTIP directly interacts with and regulates a fraction of CTCF-binding sites (CBSs) in the AML genome by recruiting CTCF/cohesin complex and R-loop-associated regulators to form R-loops. HOTTIP-mediated R-loops reinforce the CTCF boundary and facilitate formation of TADs to drive gene transcription. Either deleting CBS or targeting RNase H to eliminate R-loops in the boundary CBS of ß-catenin TAD impaired CTCF boundary activity, inhibited promoter/enhancer interactions, reduced ß-catenin target expression, and mitigated leukemogenesis in xenograft mouse models with aberrant HOTTIP expression. Thus, HOTTIP-mediated R-loop formation directly reinforces CTCF chromatin boundary activity and TAD integrity to drive oncogene transcription and leukemia development.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Cromatina/metabolismo , Leucemia Mieloide Aguda/metabolismo , Estructuras R-Loop , ARN Largo no Codificante/metabolismo , beta Catenina/metabolismo , Animales , Factor de Unión a CCCTC/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación Leucémica de la Expresión Génica , Células HEK293 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones Transgénicos , ARN Largo no Codificante/genética , Relación Estructura-Actividad , Transcripción Genética , Activación Transcripcional , beta Catenina/genética , Cohesinas
3.
Cell ; 159(2): 358-73, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25303530

RESUMEN

Enhancers provide critical information directing cell-type-specific transcriptional programs, regulated by binding of signal-dependent transcription factors and their associated cofactors. Here, we report that the most strongly activated estrogen (E2)-responsive enhancers are characterized by trans-recruitment and in situ assembly of a large 1-2 MDa complex of diverse DNA-binding transcription factors by ERα at ERE-containing enhancers. We refer to enhancers recruiting these factors as mega transcription factor-bound in trans (MegaTrans) enhancers. The MegaTrans complex is a signature of the most potent functional enhancers and is required for activation of enhancer RNA transcription and recruitment of coactivators, including p300 and Med1. The MegaTrans complex functions, in part, by recruiting specific enzymatic machinery, exemplified by DNA-dependent protein kinase. Thus, MegaTrans-containing enhancers represent a cohort of functional enhancers that mediate a broad and important transcriptional program and provide a molecular explanation for transcription factor clustering and hotspots noted in the genome.


Asunto(s)
Elementos de Facilitación Genéticos , Receptor alfa de Estrógeno/metabolismo , Factores de Transcripción/metabolismo , Estrógenos/metabolismo , Factor de Transcripción GATA3/metabolismo , Regulación de la Expresión Génica , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Humanos , Complejos Multiproteicos/metabolismo
4.
Nature ; 595(7869): 735-740, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34040254

RESUMEN

The functional engagement between an enhancer and its target promoter ensures precise gene transcription1. Understanding the basis of promoter choice by enhancers has important implications for health and disease. Here we report that functional loss of a preferred promoter can release its partner enhancer to loop to and activate an alternative promoter (or alternative promoters) in the neighbourhood. We refer to this target-switching process as 'enhancer release and retargeting'. Genetic deletion, motif perturbation or mutation, and dCas9-mediated CTCF tethering reveal that promoter choice by an enhancer can be determined by the binding of CTCF at promoters, in a cohesin-dependent manner-consistent with a model of 'enhancer scanning' inside the contact domain. Promoter-associated CTCF shows a lower affinity than that at chromatin domain boundaries and often lacks a preferred motif orientation or a partnering CTCF at the cognate enhancer, suggesting properties distinct from boundary CTCF. Analyses of cancer mutations, data from the GTEx project and risk loci from genome-wide association studies, together with a focused CRISPR interference screen, reveal that enhancer release and retargeting represents an overlooked mechanism that underlies the activation of disease-susceptibility genes, as exemplified by a risk locus for Parkinson's disease (NUCKS1-RAB7L1) and three loci associated with cancer (CLPTM1L-TERT, ZCCHC7-PAX5 and PVT1-MYC).


Asunto(s)
Factor de Unión a CCCTC/genética , Elementos de Facilitación Genéticos , Predisposición Genética a la Enfermedad , Regiones Promotoras Genéticas , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cromatina , Proteínas Cromosómicas no Histona/genética , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Células MCF-7 , Neoplasias/genética , Células-Madre Neurales , Oncogenes , Enfermedad de Parkinson/genética , Cohesinas
5.
Proc Natl Acad Sci U S A ; 121(21): e2322920121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38748587

RESUMEN

In this paper, we present findings from four separate studies using different data sources and methods to examine Chinese attitudes toward the United States amid the COVID-19 pandemic. The empirical results consistently indicate a marked and significant decline in Chinese attitudes toward the US between late 2019 and the end of 2022. Using a quasi-experimental design and granular survey data that exploit daily variations in public opinion, we offer additional evidence that the decline in Chinese attitudes toward the United States followed a distinct pattern not true for Chinese attitudes toward other countries. Specifically, the rise in Chinese unfavorability toward the United States closely corresponded to the heightened Chinese attention to the pandemic's progression in the United States. These results collectively suggest a causal effect of COVID-19, shedding light on how public health crises, international relations, and media jointly shape the increasing enmity between the two great powers.


Asunto(s)
Actitud , COVID-19 , Pandemias , Opinión Pública , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/psicología , Humanos , Estados Unidos/epidemiología , China/epidemiología , Encuestas y Cuestionarios , Pueblos del Este de Asia
6.
EMBO J ; 41(19): e110682, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-35950443

RESUMEN

The plant defense hormone, salicylic acid (SA), plays essential roles in immunity and systemic acquired resistance. Salicylic acid induced by the pathogen is perceived by the receptor nonexpressor of pathogenesis-related genes 1 (NPR1), which is recruited by TGA transcription factors to induce the expression of pathogenesis-related (PR) genes. However, the mechanism by which post-translational modifications affect TGA's transcriptional activity by salicylic acid signaling/pathogen infection is not well-established. Here, we report that the loss-of-function mutant of brassinosteroid insensitive2 (BIN2) and its homologs, bin2-3 bil1 bil2, causes impaired pathogen resistance and insensitivity to SA-induced PR gene expression, whereas the gain-of-function mutant, bin2-1, exhibited enhanced SA signaling and immunity against the pathogen. Our results demonstrate that salicylic acid activates BIN2 kinase, which in turn phosphorylates TGA3 at Ser33 to enhance TGA3 DNA binding ability and NPR1-TGA3 complex formation, leading to the activation of PR gene expression. These findings implicate BIN2 as a new component of salicylic acid signaling, functioning as a key node in balancing brassinosteroid-mediated plant growth and SA-induced immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Brasinoesteroides/metabolismo , ADN/metabolismo , Resistencia a la Enfermedad/genética , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hormonas/metabolismo , Fosforilación , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39101499

RESUMEN

Genome-scale metabolic models (GEMs) are powerful tools for predicting cellular metabolic and physiological states. However, there are still missing reactions in GEMs due to incomplete knowledge. Recent gaps filling methods suggest directly predicting missing responses without relying on phenotypic data. However, they do not differentiate between substrates and products when constructing the prediction models, which affects the predictive performance of the models. In this paper, we propose a hyperedge prediction model that distinguishes substrates and products based on dual-scale fused hypergraph convolution, DSHCNet, for inferring the missing reactions to effectively fill gaps in the GEM. First, we model each hyperedge as a heterogeneous complete graph and then decompose it into three subgraphs at both homogeneous and heterogeneous scales. Then we design two graph convolution-based models to, respectively, extract features of the vertices in two scales, which are then fused via the attention mechanism. Finally, the features of all vertices are further pooled to generate the representative feature of the hyperedge. The strategy of graph decomposition in DSHCNet enables the vertices to engage in message passing independently at both scales, thereby enhancing the capability of information propagation and making the obtained product and substrate features more distinguishable. The experimental results show that the average recovery rate of missing reactions obtained by DSHCNet is at least 11.7% higher than that of the state-of-the-art methods, and that the gap-filled GEMs based on our DSHCNet model achieve the best prediction performance, demonstrating the superiority of our method.


Asunto(s)
Redes y Vías Metabólicas , Algoritmos , Modelos Biológicos , Genoma , Biología Computacional/métodos
8.
Plant Cell ; 35(6): 2027-2043, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36890719

RESUMEN

The apical hook protects cotyledons and the shoot apical meristem from mechanical injuries during seedling emergence from the soil. HOOKLESS1 (HLS1) is a central regulator of apical hook development, as a terminal signal onto which several pathways converge. However, how plants regulate the rapid opening of the apical hook in response to light by modulating HLS1 function remains unclear. In this study, we demonstrate that the small ubiquitin-like modifier (SUMO) E3 ligase SAP AND MIZ1 DOMAIN-CONTAINING LIGASE1 (SIZ1) interacts with HLS1 and mediates its SUMOylation in Arabidopsis thaliana. Mutating SUMO attachment sites of HLS1 results in impaired function of HLS1, indicating that HLS1 SUMOylation is essential for its function. SUMOylated HLS1 was more likely to assemble into oligomers, which are the active form of HLS1. During the dark-to-light transition, light induces rapid apical hook opening, concomitantly with a drop in SIZ1 transcript levels, resulting in lower HLS1 SUMOylation. Furthermore, ELONGATED HYPOCOTYL5 (HY5) directly binds to the SIZ1 promoter and suppresses its transcription. HY5-initiated rapid apical hook opening partially depended on HY5 inhibition of SIZ1 expression. Taken together, our study identifies a function for SIZ1 in apical hook development, providing a dynamic regulatory mechanism linking the post-translational modification of HLS1 during apical hook formation and light-induced apical hook opening.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sumoilación , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ligasas/genética , Ligasas/metabolismo
9.
PLoS Biol ; 21(8): e3002227, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37531320

RESUMEN

Phosphoinositide-dependent kinase-1 (PDK1) is a master kinase of the protein A, G, and C (AGC) family kinases that play important roles in regulating cancer cell proliferation, survival, and metabolism. Besides phosphorylating/activating AKT at the cell membrane in a PI3K-dependent manner, PDK1 also exhibits constitutive activity on many other AGC kinases for tumor-promoting activity. In the latter case, PDK1 protein levels dominate its activity. We previously reported that MAPK4, an atypical MAPK, can PI3K-independently promote AKT activation and tumor growth. Here, using triple-negative breast cancer (TNBC) cell models, we demonstrate that MAPK4 can also enhance PDK1 protein synthesis, thus phosphorylate/activate PDK1 substrates beyond AKT. This new MAPK4-PDK1 axis alone lacks vigorous tumor-promoting activity but cooperates with our previously reported MAPK4-AKT axis to promote tumor growth. Besides enhancing resistance to PI3K blockade, MAPK4 also promotes cancer cell resistance to the more stringent PI3K and PDK1 co-blockade, a recently proposed therapeutic strategy. Currently, there is no MAPK4 inhibitor to treat MAPK4-high cancers. Based on the concerted action of MAPK4-AKT and MAPK4-PDK1 axis in promoting cancer, we predict and confirm that co-targeting AKT and PDK1 effectively represses MAPK4-induced cancer cell growth, suggesting a potential therapeutic strategy to treat MAPK4-high cancers.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Proteínas Quinasas Activadas por Mitógenos , Neoplasias , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neoplasias/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
10.
Proc Natl Acad Sci U S A ; 120(46): e2215285120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37931110

RESUMEN

The insulin-like growth factor 2 (IGF2) plays critical roles in cell proliferation, migration, differentiation, and survival. Despite its importance, the molecular mechanisms mediating the trafficking of IGF2 along the secretory pathway remain unclear. Here, we utilized a Retention Using Selective Hook system to analyze molecular mechanisms that regulate the secretion of IGF2. We found that a type I transmembrane protein, TMED10, is essential for the secretion of IGF2 and for differentiation of mouse myoblast C2C12 cells. Further analyses indicate that the residues 112-140 in IGF2 are important for the secretion of IGF2 and these residues directly interact with the GOLD domain of TMED10. We then reconstituted the release of IGF2 into COPII vesicles. This assay suggests that TMED10 mediates the packaging of IGF2 into COPII vesicles to be efficiently delivered to the Golgi. Moreover, TMED10 also mediates ER export of TGN-localized cargo receptor, sortilin, which subsequently mediates TGN export of IGF2. These analyses indicate that TMED10 is critical for IGF2 secretion by directly regulating ER export and indirectly regulating TGN export of IGF2, providing insights into trafficking of IGF2 for myoblast differentiation.


Asunto(s)
Factor II del Crecimiento Similar a la Insulina , Mioblastos , Vías Secretoras , Proteínas de Transporte Vesicular , Animales , Ratones , Diferenciación Celular , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Transporte de Proteínas , Proteínas de Transporte Vesicular/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo
11.
Proc Natl Acad Sci U S A ; 120(4): e2213727120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36656854

RESUMEN

The myophage possesses a contractile tail that penetrates its host cell envelope. Except for investigations on the bacteriophage T4 with a rather complicated structure, the assembly pattern and tail contraction mechanism of myophage remain largely unknown. Here, we present the fine structure of a freshwater Myoviridae cyanophage Pam3, which has an icosahedral capsid of ~680 Å in diameter, connected via a three-section neck to an 840-Å-long contractile tail, ending with a three-module baseplate composed of only six protein components. This simplified baseplate consists of a central hub-spike surrounded by six wedge heterotriplexes, to which twelve tail fibers are covalently attached via disulfide bonds in alternating upward and downward configurations. In vitro reduction assays revealed a putative redox-dependent mechanism of baseplate assembly and tail sheath contraction. These findings establish a minimal myophage that might become a user-friendly chassis phage in synthetic biology.


Asunto(s)
Myoviridae , Ensamble de Virus , Bacteriófago T4/química , Cápside , Proteínas de la Cápside/química , Microscopía por Crioelectrón , Myoviridae/química
12.
Proc Natl Acad Sci U S A ; 120(20): e2218229120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155905

RESUMEN

Castration-resistant prostate cancer (CRPC) poses a major clinical challenge with the androgen receptor (AR) remaining to be a critical oncogenic player. Several lines of evidence indicate that AR induces a distinct transcriptional program after androgen deprivation in CRPCs. However, the mechanism triggering AR binding to a distinct set of genomic loci in CRPC and how it promotes CRPC development remain unclear. We demonstrate here that atypical ubiquitination of AR mediated by an E3 ubiquitin ligase TRAF4 plays an important role in this process. TRAF4 is highly expressed in CRPCs and promotes CRPC development. It mediates K27-linked ubiquitination at the C-terminal tail of AR and increases its association with the pioneer factor FOXA1. Consequently, AR binds to a distinct set of genomic loci enriched with FOXA1- and HOXB13-binding motifs to drive different transcriptional programs including an olfactory transduction pathway. Through the surprising upregulation of olfactory receptor gene transcription, TRAF4 increases intracellular cAMP levels and boosts E2F transcription factor activity to promote cell proliferation under androgen deprivation conditions. Altogether, these findings reveal a posttranslational mechanism driving AR-regulated transcriptional reprogramming to provide survival advantages for prostate cancer cells under castration conditions.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Andrógenos , Antagonistas de Andrógenos , Factor 4 Asociado a Receptor de TNF/metabolismo , Línea Celular Tumoral , Ubiquitinación , Regulación Neoplásica de la Expresión Génica
13.
Proc Natl Acad Sci U S A ; 120(40): e2304096120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37748052

RESUMEN

Eight extant species of pangolins are currently recognized. Recent studies found that two mitochondrial haplotypes identified in confiscations in Hong Kong could not be assigned to any known pangolin species, implying the existence of a species. Here, we report that two additional mitochondrial haplotypes identified in independent confiscations from Yunnan align with the putative species haplotypes supporting the existence of this mysterious species/population. To verify the new species scenario we performed a comprehensive analysis of scale characteristics and 138 whole genomes representing all recognized pangolin species and the cryptic new species, 98 of which were generated here. Our morphometric results clearly attributed this cryptic species to Asian pangolins (Manis sp.) and the genomic data provide robust and compelling evidence that it is a pangolin species distinct from those recognized previously, which separated from the Philippine pangolin and Malayan pangolin over 5 Mya. Our study provides a solid genomic basis for its formal recognition as the ninth pangolin species or the fifth Asian one, supporting a new taxonomic classification of pangolins. The effects of glacial climate changes and recent anthropogenic activities driven by illegal trade are inferred to have caused its population decline with the genomic signatures showing low genetic diversity, a high level of inbreeding, and high genetic load. Our finding greatly expands current knowledge of pangolin diversity and evolution and has vital implications for conservation efforts to prevent the extinction of this enigmatic and endangered species from the wild.


Asunto(s)
Genómica , Pangolines , Animales , Efectos Antropogénicos , Asia , China , Pangolines/genética , Crecimiento Demográfico
14.
Proc Natl Acad Sci U S A ; 120(43): e2219491120, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37851678

RESUMEN

In conventional superconductors, electron-phonon coupling plays a dominant role in generating superconductivity. In high-temperature cuprate superconductors, the existence of electron coupling with phonons and other boson modes and its role in producing high-temperature superconductivity remain unclear. The evidence of electron-boson coupling mainly comes from angle-resolved photoemission (ARPES) observations of [Formula: see text]70-meV nodal dispersion kink and [Formula: see text]40-meV antinodal kink. However, the reported results are sporadic and the nature of the involved bosons is still under debate. Here we report findings of ubiquitous two coexisting electron-mode couplings in cuprate superconductors. By taking ultrahigh-resolution laser-based ARPES measurements, we found that the electrons are coupled simultaneously with two sharp modes at [Formula: see text]70meV and [Formula: see text]40meV in different superconductors with different dopings, over the entire momentum space and at different temperatures above and below the superconducting transition temperature. These observations favor phonons as the origin of the modes coupled with electrons and the observed electron-mode couplings are unusual because the associated energy scales do not exhibit an obvious energy shift across the superconducting transition. We further find that the well-known "peak-dip-hump" structure, which has long been considered a hallmark of superconductivity, is also omnipresent and consists of "peak-double dip-double hump" finer structures that originate from electron coupling with two sharp modes. These results provide a unified picture for the [Formula: see text]70-meV and [Formula: see text]40-meV energy scales and their evolutions with momentum, doping and temperature. They provide key information to understand the origin of these energy scales and their role in generating anomalous normal state and high-temperature superconductivity.

15.
Trends Genet ; 38(10): 1019-1047, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35811173

RESUMEN

Gene regulation by transcriptional enhancers is the dominant mechanism driving cell type- and signal-specific transcriptional diversity in metazoans. However, over four decades since the original discovery, how enhancers operate in the nuclear space remains largely enigmatic. Recent multidisciplinary efforts combining real-time imaging, genome sequencing, and biophysical strategies provide insightful but conflicting models of enhancer-mediated gene control. Here, we review the discovery and progress in enhancer biology, emphasizing the recent findings that acutely activated enhancers assemble regulatory machinery as mesoscale architectural structures with distinct physical properties. These findings help formulate novel models that explain several mysterious features of the assembly of transcriptional enhancers and the mechanisms of spatial control of gene expression.


Asunto(s)
ADN Viral , Elementos de Facilitación Genéticos , Secuencia de Bases , Núcleo Celular/genética , Regulación de la Expresión Génica/genética
16.
Mol Psychiatry ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762692

RESUMEN

Autism Spectrum Disorders (ASD) comprise a range of early age-onset neurodevelopment disorders with genetic heterogeneity. Most ASD related genes are involved in synaptic function, which is regulated by mature brain-derived neurotrophic factor (mBDNF) and its precursor proBDNF in a diametrically opposite manner: proBDNF inhibits while mBDNF potentiates synapses. Here we generated a knock-in mouse line (BDNFmet/leu) in which the conversion of proBDNF to mBDNF is attenuated. Biochemical experiments revealed residual mBDNF but excessive proBDNF in the brain. Similar to other ASD mouse models, the BDNFmet/leu mice showed reduced dendritic arborization, altered spines, and impaired synaptic transmission and plasticity in the hippocampus. They also exhibited ASD-like phenotypes, including stereotypical behaviors and deficits in social interaction. Moreover, the plasma proBDNF/mBDNF ratio was significantly increased in ASD patients compared to normal children in a case-control study. Thus, deficits in proBDNF to mBDNF conversion in the brain may contribute to ASD-like behaviors, and plasma proBDNF/mBDNF ratio may be a potential biomarker for ASD.

17.
EMBO Rep ; 24(10): e57032, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37650863

RESUMEN

Bromodomain-containing protein 4 (BRD4) is overexpressed and functionally implicated in various myeloid malignancies. However, the role of BRD4 in normal hematopoiesis remains largely unknown. Here, utilizing an inducible Brd4 knockout mouse model, we find that deletion of Brd4 (Brd4Δ/Δ ) in the hematopoietic system impairs hematopoietic stem cell (HSC) self-renewal and differentiation, which associates with cell cycle arrest and senescence. ATAC-seq analysis shows increased chromatin accessibility in Brd4Δ/Δ hematopoietic stem/progenitor cells (HSC/HPCs). Genome-wide mapping with cleavage under target and release using nuclease (CUT&RUN) assays demonstrate that increased global enrichment of H3K122ac and H3K4me3 in Brd4Δ/Δ HSC/HPCs is associated with the upregulation of senescence-specific genes. Interestingly, Brd4 deletion increases clipped H3 (cH3) which correlates with the upregulation of senescence-specific genes and results in a higher frequency of senescent HSC/HPCs. Re-expression of BRD4 reduces cH3 levels and rescues the senescence rate in Brd4Δ/Δ HSC/HPCs. This study unveils an important role of BRD4 in HSC/HPC function by preventing H3 clipping and suppressing senescence gene expression.


Asunto(s)
Histonas , Factores de Transcripción , Animales , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Histonas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Senescencia Celular/genética , Células Madre Hematopoyéticas/metabolismo , Diferenciación Celular , Hematopoyesis
18.
Mol Cell ; 66(3): 321-331.e6, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475868

RESUMEN

The molecular mechanisms underlying the opposing functions of glucocorticoid receptors (GRs) and estrogen receptor α (ERα) in breast cancer development remain poorly understood. Here we report that, in breast cancer cells, liganded GR represses a large ERα-activated transcriptional program by binding, in trans, to ERα-occupied enhancers. This abolishes effective activation of these enhancers and their cognate target genes, and it leads to the inhibition of ERα-dependent binding of components of the MegaTrans complex. Consistent with the effects of SUMOylation on other classes of nuclear receptors, dexamethasone (Dex)-induced trans-repression of the estrogen E2 program appears to depend on GR SUMOylation, which leads to stable trans-recruitment of the GR-N-CoR/SMRT-HDAC3 corepressor complex on these enhancers. Together, these results uncover a mechanism by which competitive recruitment of DNA-binding nuclear receptors/transcription factors in trans to hot spot enhancers serves as an effective biological strategy for trans-repression, with clear implications for breast cancer and other diseases.


Asunto(s)
Neoplasias de la Mama/metabolismo , Receptor alfa de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica , Receptor Cross-Talk , Receptores de Glucocorticoides/metabolismo , Transcripción Genética , Sitios de Unión , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Dexametasona/farmacología , Regulación hacia Abajo , Elementos de Facilitación Genéticos , Estradiol/farmacología , Receptor alfa de Estrógeno/agonistas , Receptor alfa de Estrógeno/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Células MCF-7 , Complejos Multiproteicos , Mutación , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 2 de Receptor Nuclear/genética , Co-Represor 2 de Receptor Nuclear/metabolismo , Unión Proteica , Interferencia de ARN , Receptor Cross-Talk/efectos de los fármacos , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/genética , Transducción de Señal , Sumoilación , Transcripción Genética/efectos de los fármacos , Transcriptoma , Transfección
19.
Proc Natl Acad Sci U S A ; 119(45): e2214089119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322768

RESUMEN

Oxygen reduction reaction (ORR), an essential reaction in metal-air batteries and fuel cells, still faces many challenges, such as exploiting cost-effective nonprecious metal electrocatalysts and identifying their surface catalytic sites. Here we introduce bulk defects, Frank partial dislocations (FPDs), into metallic cobalt to construct a highly active and stable catalyst and demonstrate an atomic-level insight into its surface terminal catalysis. Through thermally dealloying bimetallic carbide (Co3ZnC), FPDs were in situ generated in the final dealloyed metallic cobalt. Both theoretical calculations and atomic characterizations uncovered that FPD-driven surface terminations create a distinctive type of surface catalytic site that combines concave geometry and compressive strain, and this two-in-one site intensively weakens oxygen binding. When being evaluated for the ORR, the catalyst exhibits onset and half-wave potentials of 1.02 and 0.90 V (versus the reversible hydrogen electrode), respectively, and negligible activity decay after 30,000 cycles. Furthermore, zinc-air batteries and H2-O2/air fuel cells built with this catalyst also achieve remarkable performance, making it a promising alternative to state-of-the-art Pt-based catalysts. Our findings pave the way for the use of bulk defects to upgrade the catalytic properties of nonprecious electrocatalysts.

20.
Proc Natl Acad Sci U S A ; 119(43): e2205350119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36251994

RESUMEN

Androgen receptor (AR) signaling is crucial for driving prostate cancer (PCa), the most diagnosed and the second leading cause of death in male patients with cancer in the United States. Androgen deprivation therapy is initially effective in most instances of AR-positive advanced or metastatic PCa. However, patients inevitably develop lethal castration-resistant PCa (CRPC), which is also resistant to the next-generation AR signaling inhibitors. Most CRPCs maintain AR expression, and blocking AR signaling remains a main therapeutic approach. GATA2 is a pioneer transcription factor emerging as a key therapeutic target for PCa because it promotes AR expression and activation. While directly inhibiting GATA2 transcriptional activity remains challenging, enhancing GATA2 degradation is a plausible therapeutic strategy. How GATA2 protein stability is regulated in PCa remains unknown. Here, we show that constitutive photomorphogenesis protein 1 (COP1), an E3 ubiquitin ligase, drives GATA2 ubiquitination at K419/K424 for degradation. GATA2 lacks a conserved [D/E](x)xxVP[D/E] degron but uses alternate BR1/BR2 motifs to bind COP1. By promoting GATA2 degradation, COP1 inhibits AR expression and activation and represses PCa cell and xenograft growth and castration resistance. Accordingly, GATA2 overexpression or COP1 mutations that disrupt COP1-GATA2 binding block COP1 tumor-suppressing activities. We conclude that GATA2 is a major COP1 substrate in PCa and that COP1 promotion of GATA2 degradation is a direct mechanism for regulating AR expression and activation, PCa growth, and castration resistance.


Asunto(s)
Factor de Transcripción GATA2 , Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Ubiquitina-Proteína Ligasas , Humanos , Masculino , Antagonistas de Andrógenos/uso terapéutico , Andrógenos , Línea Celular Tumoral , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA