Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Transl Med ; 21(1): 519, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37533007

RESUMEN

Cardiovascular diseases (CVDs) continue to exert a significant impact on global mortality rates, encompassing conditions like pulmonary arterial hypertension (PAH), atherosclerosis (AS), and myocardial infarction (MI). Oxidative stress (OS) plays a crucial role in the pathogenesis and advancement of CVDs, highlighting its significance as a contributing factor. Maintaining an equilibrium between reactive oxygen species (ROS) and antioxidant systems not only aids in mitigating oxidative stress but also confers protective benefits on cardiac health. Herbal monomers can inhibit OS in CVDs by activating multiple signaling pathways, such as increasing the activity of endogenous antioxidant systems and decreasing the level of ROS expression. Given the actions of herbal monomers to significantly protect the normal function of the heart and reduce the damage caused by OS to the organism. Hence, it is imperative to recognize the significance of herbal monomers as prospective therapeutic interventions for mitigating oxidative damage in CVDs. This paper aims to comprehensively review the origins and mechanisms underlying OS, elucidate the intricate association between CVDs and OS, and explore the therapeutic potential of antioxidant treatment utilizing herbal monomers. Furthermore, particular emphasis will be placed on examining the cardioprotective effects of herbal monomers by evaluating their impact on cardiac signaling pathways subsequent to treatment.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Corazón
2.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37108148

RESUMEN

Depression is a mental illness that has a serious negative impact on physical and mental health. The pathophysiology of depression is still unknown, and therapeutic medications have drawbacks, such as poor effectiveness, strong dependence, adverse drug withdrawal symptoms, and harmful side effects. Therefore, the primary purpose of contemporary research is to understand the exact pathophysiology of depression. The connection between astrocytes, neurons, and their interactions with depression has recently become the focus of great research interest. This review summarizes the pathological changes of neurons and astrocytes, and their interactions in depression, including the alterations of mid-spiny neurons and pyramidal neurons, the alterations of astrocyte-related biomarkers, and the alterations of gliotransmitters between astrocytes and neurons. In addition to providing the subjects of this research and suggestions for the pathogenesis and treatment techniques of depression, the intention of this article is to more clearly identify links between neuronal-astrocyte signaling processes and depressive symptoms.


Asunto(s)
Astrocitos , Depresión , Humanos , Transducción de Señal , Neuronas , Neuritas
3.
Entropy (Basel) ; 25(7)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37510018

RESUMEN

Multi-label streaming feature selection has received widespread attention in recent years because the dynamic acquisition of features is more in line with the needs of practical application scenarios. Most previous methods either assume that the labels are independent of each other, or, although label correlation is explored, the relationship between related labels and features is difficult to understand or specify. In real applications, both situations may occur where the labels are correlated and the features may belong specifically to some labels. Moreover, these methods treat features individually without considering the interaction between features. Based on this, we present a novel online streaming feature selection method based on label group correlation and feature interaction (OSLGC). In our design, we first divide labels into multiple groups with the help of graph theory. Then, we integrate label weight and mutual information to accurately quantify the relationships between features under different label groups. Subsequently, a novel feature selection framework using sliding windows is designed, including online feature relevance analysis and online feature interaction analysis. Experiments on ten datasets show that the proposed method outperforms some mature MFS algorithms in terms of predictive performance, statistical analysis, stability analysis, and ablation experiments.

4.
Molecules ; 27(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35897848

RESUMEN

The Pt-chitosan-TiO2 charge transfer (CT) complex was synthesized via the sol-gel and impregnation method. The synthesized photocatalysts were thoroughly characterized, and their photocatalytic activity were evaluated toward H2 production through water reduction under visible-light irradiation. The effect of the preparation conditions of the photocatalysts (the degree of deacetylation of chitosan, addition amount of chitosan, and calcination temperature) on the photocatalytic activity was discussed. The optimal Pt-10%DD75-T200 showed a H2 generation rate of 280.4 µmol within 3 h. The remarkable visible-light photocatalytic activity of Pt-chitosan-TiO2 was due to the CT complex formation between chitosan and TiO2, which extended the visible-light absorption and induced the ligand-to-metal charge transfer (LMCT). The photocatalytic mechanism of Pt-chitosan-TiO2 was also investigated. This paper outlines a new and facile pathway for designing novel visible-light-driven photocatalysts that are based on TiO2 modified by polysaccharide biomass wastes that are widely found in nature.


Asunto(s)
Quitosano , Hidrógeno , Catálisis , Ligandos , Luz , Titanio
5.
J Cell Physiol ; 236(5): 3832-3862, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33111343

RESUMEN

Tetrahydroxy stilbene glycoside (TSG) is a main active compound in Polygonum multiflorum. Acetaminophen (APAP) is a well-known analgesic and antipyretic drug. It is considered to be safe within a therapeutic range, in case of acute intoxication hepatotoxicity occurs. This present study aims to observe TSG-provided alleviation on APAP-induced hepatoxicity in C57BL/6 mice. APAP performs extensive necrosis and dissolves nucleus suggesting liver damage from hepatic histopathology. Serum alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase analysis and liver histological evaluation showed that TSG reduced the hepatotoxicity induced by a toxic dose of APAP. Moreover, TSG alone had no hepatotoxicity. TSG eliminated hepatic glutathione depletion and cysteine adducts formation. It also reduced the expression of interleukin-10 and lowered the production of reactive oxygen species in liver tissues. Luminex was used to detect cytokine production in different groups. Herein, we used an untargeted metabolomics approach by performing ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry on treated mice to identify metabolic disruptions under APAP and TSG. Major alterations were observed for purine metabolism, amino acid metabolism, and fatty acid metabolism. These data provide metabolic evidence and biomarkers in the liver that the ABC transporters, Glycine serine and threonine metabolism, and Choline metabolism in cancer changed the most. These targets of metabolites have the potential to improve our understanding of homeostatic. Meanwhile, these metabolites revealed that TSG can alleviate inflammation caused by APAP and promote the activity of intrinsic antioxidants. In summary, TSG can regulate lipid metabolism, promote the production of antioxidant enzymes, and decrease the inflammatory response.


Asunto(s)
Glicósidos/farmacología , Hígado/patología , Metabolómica , Estilbenos/farmacología , Acetaminofén , Animales , Cromatografía Líquida de Alta Presión , Citocinas/metabolismo , Análisis de Datos , Análisis Discriminante , Glicósidos/química , Inflamación/patología , Análisis de los Mínimos Cuadrados , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/fisiopatología , Masculino , Espectrometría de Masas , Ratones Endogámicos C57BL , Análisis Multivariante , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estilbenos/química
6.
Cell Mol Neurobiol ; 41(4): 687-704, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32632892

RESUMEN

Excitatory toxicity is still a hot topic in the study of ischemic stroke, and related research has focused mainly on neurons. Adenosine is an important neuromodulator that is known as a "biosignature" in the central nervous system (CNS). The protective effect of exogenous adenosine on neurons has been confirmed, but its mechanism remains elusive. In this study, astrocytes were pretreated with adenosine, and the effects of an A2a receptor (A2aR) inhibitor (SCH58261) and A2b receptor (A2bR) inhibitor (PSB1115) on excitatory glutamate were investigated. An oxygen glucose deprivation/reoxygenation (OGD/R) and glutamate model was generated in vitro. Post-model assessment included expression levels of glutamate transporters (glt-1), gap junction protein (Cx43) and glutamate receptor (AMPAR), Na+-K+-ATPase activity, and diffusion distance of dyes. Glutamate and glutamine contents were determined at different time points. The results showed that (1) adenosine could improve the function of Na+-K+-ATPase, upregulate the expression of glt-1, and enhance the synthesis of glutamine in astrocytes. This effect was associated with A2aR activation but not with A2bR activation. (2) Adenosine could inhibit the expression of gap junction protein (Cx43) and reduce glutamate diffusion. Inhibition of A2aR attenuated adenosine inhibition of gap junction intercellular communication (GJIC) in the OGD/R model, while it enhanced adenosine inhibition of GJIC in the glutamate model, depending on the glutamate concentration. (3) Adenosine could cause AMPAR gradually entered the nucleus from the cytoplasm, thereby reducing the expression of AMPAR on the cell membrane. Taken together, the results indicate that adenosine plays a role of anti-excitatory toxicity effect in protection against neuronal death and the functional recovery of ischemic stroke mainly by targeting astrocytes, which are closely related to A2aR. The present study provided a scientific basis for adenosine prevention and ischemic stroke treatment, thereby providing a new approach for alleviating ischemic stroke.


Asunto(s)
Adenosina/farmacología , Astrocitos/patología , Aminoácidos Excitadores/toxicidad , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Transporte Biológico/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Células Cultivadas , Conexina 43/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Colorantes Fluorescentes/metabolismo , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Glucosa/deficiencia , Ácido Glutámico/metabolismo , Modelos Biológicos , Oxígeno , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
7.
J Am Chem Soc ; 141(13): 5437-5443, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30866625

RESUMEN

Pyridine, one of the most important azaarenes, is ubiquitous in functional molecules. The electronic properties of pyridine have been exploited to trigger asymmetric transformations of prochiral species as a direct approach for accessing chiral pyridine derivatives. However, the full potential of this synthetic strategy for the construction of enantioenriched γ-functionalized pyridines remains untapped. Here, we describe the first enantioselective addition of prochiral radicals to vinylpyridines under cooperative photoredox and asymmetric catalysis mediated by visible light. The enantioselective reductive couplings of vinylpyridines with aldehydes, ketones, and imines were achieved by employing a chiral Brønsted acid to activate the reaction partners and provide stereocontrol via H-bonding interactions. Valuable chiral γ-secondary/tertiary hydroxyl- and amino-substituted pyridines were obtained in high yields with good to excellent enantioselectivities.

9.
Medicine (Baltimore) ; 103(18): e37969, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701258

RESUMEN

Familial hypertrophic cardiomyopathy (FHCM) is an inherited cardiac disease caused by mutations of sarcomere proteins and can be the underlining substrate for major cardiovascular events. Early identification and diagnosis of FHCM are essential to reduce sudden cardiac death. So, this paper summarized the current knowledge on FHCM, and displayed the analysis via bibliometrics method. The relevant literature on FHCM were screened searched via the Web of Science Core Collection database from 2012 to 2022. The literatures were was summarized and analyzed via the bibliometrics method analyzed via CiteSpace and VOSviewer according to topic categories, distribution of spatiotemporal omics and authors, as well as references. Since 2012, there are 909 research articles and reviews related to FHCM. The number of publication for the past 10 years have shown that the development of FHCM research has been steady, with the largest amount of literature in 2012. The most published papers were from the United States, followed by the United Kingdom and Italy. The University of London (63 papers) was the institution that published the most research articles, followed by Harvard University (45 papers) and University College London (45 papers). Keywords formed 3 clusters, focused on the pathogenesis of FHCM, the diagnosis of FHCM, FHCM complications, respectively. The bibliometric analysis and visualization techniques employed herein highlight key trends and focal points in the field, predominantly centered around FHCM's pathogenesis, diagnostic approaches, and its complications. These insights are instrumental in steering future research directions in this area.


Asunto(s)
Bibliometría , Cardiomiopatía Hipertrófica Familiar , Humanos , Cardiomiopatía Hipertrófica Familiar/genética , Investigación Biomédica/tendencias
11.
J Proteomics ; 299: 105157, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38462170

RESUMEN

Traditional Chinese medicine has been utilized in China for approximately thousands of years in clinical settings to prevent Alzheimer's disease (AD) and enhance memory, despite the lack of a systematic exploration of its biological underpinnings. Exciting research has corroborated the beneficial effects of tetrahydroxy stilbene glycoside (TSG), an extract derived from Polygonum multiflorum, in delaying learning and memory impairment in a model that mimics AD. Therefore, the primary objective of this study is to investigate the major function of TSG upon protein regulation in AD. Herein, a novel approach, encompassing data independent acquisition (DIA), DIA phosphorylated proteomics, and parallel reaction monitoring (PRM), was utilized to integrate quantitative proteomic data collected from APP/PS1 mouse model exhibiting toxic intracellular aggregation of Aß. Initially, we deliberated upon both single and multi-dimensional data pertaining to AD model mice. Furthermore, we authenticated disparities in protein phosphorylation quantity and expression, phosphorylation function, and ultimately phosphorylation kinase analysis. In order to validate the results, we utilized PRM ion monitoring technology to identify potential protein or peptide biomarkers. In the mixed samples, targeted detection of 50 target proteins revealed that 26 to 33 target proteins were stably detected by PRM. In summary, our findings provide new candidates for AD biomarker, which have been identified and validated through protein researches conducted on mouse brains. This offers a wealth of potential resources for extensive biomarker validation in neurodegenerative diseases. SIGNIFICANCE: DIA phosphorylated proteomics technique was used to detect and analyze phosphorylated proteins in brain tissues of mice with AD. Data were analyzed by various bioinformatics tools to explore the phosphorylation events and characterize them related to TSG. The results of DIA were further verified by PRM. Besides, we mapped the major metabolite classes emerging from the analyses to key biological pathways implicated in AD to understand the potential roles of the molecules and the interactions in triggering symptom onset and progression of AD. Meanwhile, we clarified that in the context of AD onset and TSG intervention, the changes in proteins, protein phosphorylation, phosphorylation kinases, and the internal connections.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Proteómica , Precursor de Proteína beta-Amiloide , Glicósidos , Biomarcadores , Ratones Transgénicos , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/metabolismo
12.
Int J Biol Macromol ; 271(Pt 2): 132375, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38759855

RESUMEN

Anti-counterfeiting in 3D printing has gained significant attention, however, current approaches often fall short of fully capitalizing on the inherent advantages of personalized manufacturing with this technology. Herein, we propose an embedded anti-counterfeiting scheme for additive manufacturing, accompanied by a novel fluorescent encrypted quick response (QR) method. This approach involves the development of a 3D printing filament utilizing poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) bio-composites as the primary filament matrix, with varying quantities of Chlorella powder incorporated. The resulting filament has a good thermal stability near 200 °C and exhibits a distinctive red fluorescence under ultraviolet light, with the emission peak at 677 nm when excited by 415 nm blue light. Fluorescence imaging analysis confirms that the red fluorescence in 3D printed devices containing Chlorella is a result of the chlorophyll and its derivatives fluorescence effect. The fluorescent encrypted QR codes are inconspicuous in daylight but become easily discernible under ultraviolet light. In the cases of recognizable QR codes, the ∆Eab* values all exceed 35, and the LC/LB values deviate significantly from 1. This research delves into the fluorescence characteristics of Chlorella and highlights its applicability in 3D printing, specifically within the realm of product anti-counterfeiting, presenting a groundbreaking approach.


Asunto(s)
Chlorella , Poliésteres , Impresión Tridimensional , Poliésteres/química , Chlorella/química , Fluorescencia
13.
J Affect Disord ; 348: 107-115, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101523

RESUMEN

BACKGROUND: Depression is a refractory psychiatric disorder closely associated with dysfunction of the gap junctions (GJs) between astrocytes as well as neuroinflammation. Higenamine (Hig) is a potent cardiotonic ingredient in Fuzi (i.e., Aconitum carmichaeli Debx.) with anti-inflammatory and antioxidant effects, which has a significant protective effect on damaged nerve cells and has great potential for the treatment of neuropsychiatric diseases. METHODS: Rats were stimulated by chronic unpredictable stress (CUS) for 28 days while given Hig (5, 10, 20 mg/kg) and then analyzed behaviorally by the open field test, sucrose preference test, and forced swimming test. Changes in astrocyte GJs function and morphology were observed by dye transfer and transmission electron microscopy, respectively. Expression and phosphorylation of connexin 43 (Cx43) were analyzed by Western blot. Also, considering the close relationship between depression and neuroinflammation, we determined the inflammatory response in serum with ELISA kits and analyzed the expression of inflammation-related proteins with Western blot. RESULTS: Hig ameliorated CUS-induced depression-like behavior in rats. Hig administration improved gap junctional dysfunction in astrocytes, reduced gap junctional gaps and elevated the expression of Cx43 and decreased the phosphorylation of Cx43. Meanwhile, Hig administration was also able to attenuate the inflammatory response that occurs after CUS in rats. LIMITATIONS: For the role of Cx43 in depression, we did not validate it more deeply in animal models with knockout Cx43. In addition, GJs dysfunction might be associated with the inflammatory response seen in depression, but this needs to be further investigated. CONCLUSIONS: Hig ameliorates depression and exerts its antidepressant effect possibly by improving the dysfunctional GJs between astrocytes and the inflammatory response.


Asunto(s)
Alcaloides , Astrocitos , Conexina 43 , Tetrahidroisoquinolinas , Humanos , Ratas , Animales , Conexina 43/metabolismo , Conexina 43/farmacología , Enfermedades Neuroinflamatorias , Uniones Comunicantes/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/metabolismo
14.
Phytomedicine ; 123: 155238, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128394

RESUMEN

BACKGROUND: Ischemic stroke, a severe and life-threatening neurodegenerative condition, currently relies on thrombolytic therapy with limited therapeutic window and potential risks of hemorrhagic transformation. Thus, there is a crucial need to explore novel therapeutic agents for ischemic stroke. Ginsenoside Rg1 (Rg1), a potential neuroprotective agent, exhibits anti-ischemic effects attributed to its anti-inflammatory, anti-oxidant, and anti-apoptotic properties. Nevertheless, the precise underlying mechanism of action remains to be fully elucidated. PURPOSE: This study aimed to explore whether Rg1 exerts anti-ischemic stroke effects by inhibiting pyroptotic neuronal cell death through modulation of the chemokine like factor 1 (CKLF1)/ C-C chemokine receptor type 5 (CCR5) axis. METHODS: In this study, the MCAO model was used as an ischemic stroke model, and experimental tests were performed after 6 hours of ischemia. The anti-ischemic effect of Rg1 was examined by TTC staining, nissl-staining and neurobehavioral tests. In the in vitro experiments, PC12 cells were subjected to stimulation with CKLF1's mimetic peptide C27 to assess the potential of CKLF1 to induce focal neuronal cell death. Additionally, the impact of CKLF1 mimetic peptide C27, antagonistic peptide C19, and CCR5 inhibitor MVC on PC12 cells subjected to oxygen-glucose deprivation (OGD) and subsequently treated with Rg1 was investigated. In vivo, Rg1 treatment was examined by quantitative real-time PCR (qPCR), ELISA, immunohistochemistry (IHC), immunofluorescence (IF), western blot (WB), and co-immunoprecipitate (Co-IP) assays to perspective whether Rg1 treatment reduces CKLF1/CCR5 axis-induced pyroptotic neuronal cell death. In addition, to further explore the biological significance of CKLF1 in ischemic stroke, CKLF1-/- rats were used as the observation subjects in this study. RESULTS: The in vitro results suggested that CKLF1 was able to induce neuronal cells to undergo pyroptosis. In vivo pharmacodynamic results showed that Rg1 treatment was able to significantly improve symptoms in ischemic stroke rats. In addition, Rg1 treatment was able to inhibit the interaction between CKLF1 and CCR5 after ischemic stroke and inhibited CKLF1/CCR5 axis-induced pyroptosis. The results of related experiments in CKLF1-/- rats showed that Rg1 lost its therapeutic effect after CKLF1 knockdown. CONCLUSION: Our findings indicate that the activation of the NLRP3 inflammasome is initiated by the CKLF1/CCR5 axis, facilitated through the activation of the NF-κB pathway, ultimately resulting in the pyroptosis of neuronal cells. Conversely, Rg1 demonstrates the capability to mitigate neuronal cell damage following CKLF1-induced effects by suppressing the expression of CKLF1. Thus, CKLF1 represents a crucial target for Rg1 in the context of cerebral ischemia treatment, and it also holds promise as a potential target for drug screening in the management of ischemic stroke.


Asunto(s)
Isquemia Encefálica , Ginsenósidos , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Humanos , Ratas , Animales , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Piroptosis , Receptores de Quimiocina/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Receptores CCR5/uso terapéutico
15.
Ageing Res Rev ; 96: 102286, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38561044

RESUMEN

Chemokines and their corresponding receptors play crucial roles in orchestrating inflammatory and immune responses, particularly in the context of pathological conditions disrupting the internal environment. Among these receptors, CCR5 has garnered considerable attention due to its significant involvement in the inflammatory cascade, serving as a pivotal mediator of neuroinflammation and other inflammatory pathways associated with various diseases. However, a notable gap persists in comprehending the intricate mechanisms governing the interplay between CCR5 and its ligands across diverse and intricate inflammatory pathologies. Further exploration is warranted, especially concerning the inflammatory cascade instigated by immune cell infiltration and the precise binding sites within signaling pathways. This study aims to illuminate the regulatory axes modulating signaling pathways in inflammatory cells by providing a comprehensive overview of the pathogenic processes associated with CCR5 and its ligands across various disorders. The primary focus lies on investigating the pathomechanisms associated with CCR5 in disorders related to neuroinflammation, alongside the potential impact of aging on these processes and therapeutic interventions. The discourse culminates in addressing current challenges and envisaging potential future applications, advocating for innovative research endeavors to advance our comprehension of this realm.


Asunto(s)
Enfermedades Neuroinflamatorias , Receptores CCR5 , Humanos , Receptores CCR5/metabolismo , Transducción de Señal
16.
J Adv Res ; 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37926143

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) represents a progressive condition characterized by the remodeling of pulmonary arteries, ultimately culminating in right heart failure and increased mortality rates. Substantial evidence has elucidated the pivotal role of perivascular inflammatory factors and immune dysregulation in the pathogenesis of PH. Chemokines, a class of small secreted proteins, exert precise control over immune cell recruitment and functionality, particularly with respect to their migration to sites of inflammation. Consequently, chemokines emerge as critical drivers facilitating immune cell infiltration into the pulmonary tissue during inflammatory responses. This review comprehensively examines the significant contributions of CC chemokines in the maintenance of immune cell homeostasis and their pivotal role in regulating inflammatory responses. The central focus of this discussion is directed towards elucidating the precise immunoregulatory actions of CC chemokines concerning various immune cell types, including neutrophils, monocytes, macrophages, lymphocytes, dendritic cells, mast cells, eosinophils, and basophils, particularly in the context of pH processes. Furthermore, this paper delves into an exploration of the underlying pathogenic mechanisms that underpin the development of PH. Specifically, it investigates processes such as cellular pyroptosis, examines the intricate crosstalk between bone morphogenetic protein receptor type 2 (BMPR2) mutations and the immune response, and sheds light on key signaling pathways involved in the inflammatory response. These aspects are deemed critical in enhancing our understanding of the complex pathophysiology of PH. Moreover, this review provides a comprehensive synthesis of findings from experimental investigations targeting immune cells and CC chemokines. AIM OF REVIEW: In summary, the inquiry into the inflammatory responses mediated by CC chemokines and their corresponding receptors, and their potential in modulating immune reactions, holds promise as a prospective avenue for addressing PH. The potential inhibition of CC chemokines and their receptors stands as a viable strategy to attenuate the inflammatory cascade and ameliorate the pathological manifestations of PH. Nonetheless, it is essential to acknowledge the current state of clinical trials and the ensuing progress, which regrettably appears to be less than encouraging. Substantial hurdles exist in the successful translation of research findings into clinical applications. The intention is that such emphasis could potentially foster the advancement of potent therapeutic agents presently in the process of clinical evaluation. This, in turn, may further bolster the potential for effective management of PH.

17.
Biomed Pharmacother ; 167: 115545, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37734259

RESUMEN

Hypericin is widely utilized for its precise antidepressant properties, but its exact antidepressant mechanism remains unclear. Gap junctions, which were predominantly expressed in astrocytes in the central nervous system, are concerned with the pathogenesis of depression. However, the role of hypericin in gap junctional dysfunction in depression has rarely been investigated. Here, we found that gap junctions were ultra-structurally broadened in the chronic unpredictable stress (CUS) rat model of depression, while hypericin repaired the dysfunction of gap junctions. Suppression of gap junctions by bilateral injection of carbenoxolone (CBX) in the prefrontal cortex of rats significantly inhibited the restoration of gap junctional dysfunction in depression by hypericin. Meanwhile, hypericin failed to show antidepressant benefits. Furthermore, in corticosterone (CORT)-stimulated primary astrocytes derived from neonatal rats, hypericin dramatically reversed the phosphorylation of connexin 43 (Cx43), normalizing the expression of Cx43 and thereby ameliorating gap junctional dysfunction. Comparatively, CBX inhibited the remission of hypericin on gap junctional intercellular communication function. Gap junctional function might be a novel therapeutic target for hypericin in the treatment of depression and provide potential novel insights into the antidepressant mechanism of other herbal ingredients.

18.
Cell Death Discov ; 9(1): 78, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841823

RESUMEN

Pulmonary hypertension (PH) was a cardiovascular disease with high morbidity and mortality. PH was a chronic disease with complicated pathogenesis and uncontrollable factors. PH was divided into five groups according to its pathogenesis and clinical manifestations. Although the treatment and diagnosis of PH has made great progress in the past ten years. However, the diagnosis and prognosis of the PAH had a great contrast, which was not conducive to the diagnosis and treatment of PH. If not treated properly, it will lead to right ventricular failure or even death. Therefore, it was necessary to explore the pathogenesis of PH. The problem we urgently need to solve was to find and develop drugs for the treatment of PH. We reviewed the PH articles in the past 10 years or so as well as systematically summarized the recent advance. We summarized the latest research on the key regulatory factors (pyroptosis, apoptosis, necroptosis, ferroptosis, and endoplasmic reticulum stress) involved in PH. To provide theoretical basis and basis for finding new therapeutic targets and research directions of PH.

19.
Cell Death Discov ; 9(1): 155, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37165005

RESUMEN

Stroke has caused tremendous social stress worldwide, yet despite decades of research and development of new stroke drugs, most have failed and rt-PA (Recombinant tissue plasminogen activator) is still the accepted treatment for ischemic stroke. the complexity of the stroke mechanism has led to unsatisfactory efficacy of most drugs in clinical trials, indicating that there are still many gaps in our understanding of stroke. Pyroptosis is a programmed cell death (PCD) with inflammatory properties and are thought to be closely associated with stroke. Pyroptosis is regulated by the GSDMD of the gasdermin family, which when cleaved by Caspase-1/Caspase-11 into N-GSDMD with pore-forming activity can bind to the plasma membrane to form small 10-20 nm pores, which would allow the release of inflammatory factors IL-18 and IL-1ß before cell rupture, greatly exacerbating the inflammatory response. The pyroptosis occurs mainly in the border zone of cerebral infarction, and glial cells, neuronal cells and brain microvascular endothelial cells (BMECs) all undergo pyroptosis after stroke, which largely exacerbates the breakdown of the blood-brain barrier (BBB) and thus aggravates brain injury. Therefore, pyroptosis may be a good direction for the treatment of stroke. In this review, we focus on the latest mechanisms of action of pyroptosis and the process by which pyroptosis regulates stroke development. We also suggest potential therapeutic stroke drugs that target the pyroptosis pathway, providing additional therapeutic strategies for the clinical management of stroke. The role of pyroptosis after stroke. After stroke, microglia first rush to the damaged area and polarize into M1 and M2 types. Under the influence of various stimuli, microglia undergo pyroptosis, release pro-inflammatory factors, and are converted to the M1 type; astrocytes and neuronal cells also undergo pyroptosis under the stimulation of various pro-inflammatory factors, leading to astrocyte death due to increased osmotic pressure in the membrane, resulting in water absorption and swelling until rupture. BMECs, the main structural component of the BBB, also undergo pyroptosis when stimulated by pro-inflammatory factors released from microglia and astrocytes, leading to the destruction of the structural integrity of the BBB, ultimately causing more severe brain damage. In addition, GSDMD in neutrophils mainly mediate the release of NETs rather than pyroptosis, which also aggravates brain injury. IL-10=interleukin-10; TGF-ß = transforming growth factor-ß; IL-18=interleukin-18; IL-1ß = interleukin-1ß; TNF-α = tumor necrosis factor-α; iNOS=induced nitrogen monoxide synthase; MMPs=Matrix metalloproteinases; GSDMD = gasdermin D; BMECs=brain microvascular endothelial cells; BBB = blood-brain barrier.

20.
Front Oncol ; 12: 1029913, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36419879

RESUMEN

Background: Visceral sarcomas are a rare form of soft tissue sarcoma. This study aimed to evaluate the survival and prognostic factors and effective treatments for visceral sarcomas. Methods: All patients with visceral sarcoma referred to our center between January 2010 and December 2021 were retrospectively analyzed. The Kaplan-Meier method and a log-rank test were used for survival analysis. Results: A total of 53 patients with visceral sarcoma were analyzed in this study with the median age at diagnosis of 57 (range, 24-77) years. Among them, 37 (69.8%) and 16 (30.2%) patients had localized and metastatic diseases at the initial presentation, respectively, and 44 patients underwent surgical resection. The median follow-up, event-free survival (EFS) and overall survival (OS) were 63.0 (range, 2-130), 42.0 months (95% confidence interval [CI] 10.879-73.121) and 45.0 months (95% CI 9.938-80.062), respectively. The 5-year EFS and OS rates were 44% and 46%, respectively. Univariate analysis of prognostic indicators illustrated that metastasis at presentation, surgery, surgical margin and the types of surgery were significantly associated with OS and EFS. In this study, combined chemotherapy or radiotherapy had no effects on EFS and OS. Conclusion: Primary visceral sarcoma is an uncommon and aggressive malignant tumor with a higher rate of local recurrence. In the largest cohort of visceral sarcomas in China to date, we identified metastases at presentation, surgery, surgical margin, and the types of surgery as independent predictors of survival. The combination of chemotherapy and radiotherapy did not affect survival.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA