Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.110
Filtrar
1.
Cell ; 186(11): 2380-2391.e9, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37146611

RESUMEN

Prime-boost regimens for COVID-19 vaccines elicit poor antibody responses against Omicron-based variants and employ frequent boosters to maintain antibody levels. We present a natural infection-mimicking technology that combines features of mRNA- and protein nanoparticle-based vaccines through encoding self-assembling enveloped virus-like particles (eVLPs). eVLP assembly is achieved by inserting an ESCRT- and ALIX-binding region (EABR) into the SARS-CoV-2 spike cytoplasmic tail, which recruits ESCRT proteins to induce eVLP budding from cells. Purified spike-EABR eVLPs presented densely arrayed spikes and elicited potent antibody responses in mice. Two immunizations with mRNA-LNP encoding spike-EABR elicited potent CD8+ T cell responses and superior neutralizing antibody responses against original and variant SARS-CoV-2 compared with conventional spike-encoding mRNA-LNP and purified spike-EABR eVLPs, improving neutralizing titers >10-fold against Omicron-based variants for 3 months post-boost. Thus, EABR technology enhances potency and breadth of vaccine-induced responses through antigen presentation on cell surfaces and eVLPs, enabling longer-lasting protection against SARS-CoV-2 and other viruses.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacunas de ARNm , Animales , Humanos , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Complejos de Clasificación Endosomal Requeridos para el Transporte , ARN Mensajero , SARS-CoV-2
2.
Nature ; 630(8015): 206-213, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38778111

RESUMEN

Targeted radionuclide therapy, in which radiopharmaceuticals deliver potent radionuclides to tumours for localized irradiation, has addressed unmet clinical needs and improved outcomes for patients with cancer1-4. A therapeutic radiopharmaceutical must achieve both sustainable tumour targeting and fast clearance from healthy tissue, which remains a major challenge5,6. A targeted ligation strategy that selectively fixes the radiopharmaceutical to the target protein in the tumour would be an ideal solution. Here we installed a sulfur (VI) fluoride exchange (SuFEx) chemistry-based linker on radiopharmaceuticals to prevent excessively fast tumour clearance. When the engineered radiopharmaceutical binds to the tumour-specific protein, the system undergoes a binding-to-ligation transition and readily conjugates to the tyrosine residues through the 'click' SuFEx reaction. The application of this strategy to a fibroblast activation protein (FAP) inhibitor (FAPI) triggered more than 80% covalent binding to the protein and almost no dissociation for six days. In mice, SuFEx-engineered FAPI showed 257% greater tumour uptake than did the original FAPI, and increased tumour retention by 13-fold. The uptake in healthy tissues was rapidly cleared. In a pilot imaging study, this strategy identified more tumour lesions in patients with cancer than did other methods. SuFEx-engineered FAPI also successfully achieved targeted ß- and α-radionuclide therapy, causing nearly complete tumour regression in mice. Another SuFEx-engineered radioligand that targets prostate-specific membrane antigen (PSMA) also showed enhanced therapeutic efficacy. Considering the broad scope of proteins that can potentially be ligated to SuFEx warheads, it might be possible to adapt this strategy to other cancer targets.


Asunto(s)
Terapia Molecular Dirigida , Neoplasias de la Próstata , Radioisótopos , Radiofármacos , Animales , Humanos , Masculino , Ratones , Antígenos de Superficie/química , Antígenos de Superficie/metabolismo , Línea Celular Tumoral , Fluoruros/química , Fluoruros/metabolismo , Glutamato Carboxipeptidasa II/química , Glutamato Carboxipeptidasa II/metabolismo , Ligandos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Terapia Molecular Dirigida/métodos , Proyectos Piloto , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/radioterapia , Radioisótopos/uso terapéutico , Radiofármacos/química , Radiofármacos/uso terapéutico , Radiofármacos/metabolismo , Radiofármacos/farmacocinética , Compuestos de Azufre/química , Compuestos de Azufre/metabolismo , Tirosina/metabolismo , Tirosina/química , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Nature ; 623(7989): 1017-1025, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37993719

RESUMEN

HIV-1 envelope (Env) exhibits distinct conformational changes in response to host receptor (CD4) engagement. Env, a trimer of gp120 and gp41 heterodimers, has been structurally characterized in a closed, prefusion conformation with closely associated gp120s and coreceptor binding sites on gp120 V3 hidden by V1V2 loops1-4 and in fully saturated CD4-bound open Env conformations with changes including outwardly rotated gp120s and displaced V1V2 loops3-9. To investigate changes resulting from substoichiometric CD4 binding, we solved single-particle cryo-electron microscopy (cryo-EM) structures of soluble, native-like heterotrimeric Envs bound to one or two CD4 molecules. Most of the Env trimers bound to one CD4 adopted the closed, prefusion Env state, with a minority exhibiting a heterogeneous partially open Env conformation. When bound to two CD4s, the CD4-bound gp120s exhibited an open Env conformation including a four-stranded gp120 bridging sheet and displaced gp120 V1V2 loops that expose the coreceptor sites on V3. The third gp120 adopted an intermediate, occluded-open state10 that showed gp120 outward rotation but maintained the prefusion three-stranded gp120 bridging sheet with only partial V1V2 displacement and V3 exposure. We conclude that most of the engagements with one CD4 molecule were insufficient to stimulate CD4-induced conformational changes, whereas binding two CD4 molecules led to Env opening in CD4-bound protomers only. The substoichiometric CD4-bound soluble Env heterotrimer structures resembled counterparts derived from a cryo-electron tomography study of complexes between virion-bound Envs and membrane-anchored CD4 (ref. 11), validating their physiological relevance. Together, these results illuminate intermediate conformations of HIV-1 Env and illustrate its structural plasticity.


Asunto(s)
Antígenos CD4 , Proteína gp120 de Envoltorio del VIH , VIH-1 , Conformación Proteica , Antígenos CD4/química , Antígenos CD4/metabolismo , Antígenos CD4/ultraestructura , Microscopía por Crioelectrón , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/metabolismo , Proteína gp120 de Envoltorio del VIH/ultraestructura , VIH-1/química , VIH-1/ultraestructura , Rotación , Reproducibilidad de los Resultados
4.
Nature ; 604(7907): 771-778, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35418677

RESUMEN

Adhesion G protein-coupled receptors (aGPCRs) constitute an evolutionarily ancient family of receptors that often undergo autoproteolysis to produce α and ß subunits1-3. A tethered agonism mediated by the 'Stachel sequence' of the ß subunit has been proposed to have central roles in aGPCR activation4-6. Here we present three cryo-electron microscopy structures of aGPCRs coupled to the Gs heterotrimer. Two of these aGPCRs are activated by tethered Stachel sequences-the ADGRG2-ß-Gs complex and the ADGRG4-ß-Gs complex (in which ß indicates the ß subunit of the aGPCR)-and the other is the full-length ADGRG2 in complex with the exogenous ADGRG2 Stachel-sequence-derived peptide agonist IP15 (ADGRG2(FL)-IP15-Gs). The Stachel sequences of both ADGRG2-ß and ADGRG4-ß assume a U shape and insert deeply into the seven-transmembrane bundles. Constituting the FXφφφXφ motif (in which φ represents a hydrophobic residue), five residues of ADGRG2-ß or ADGRG4-ß extend like fingers to mediate binding to the seven-transmembrane domain and activation of the receptor. The structure of the ADGRG2(FL)-IP15-Gs complex reveals the structural basis for the improved binding affinity of IP15 compared with VPM-p15 and indicates that rational design of peptidic agonists could be achieved by exploiting aGPCR-ß structures. By converting the 'finger residues' to acidic residues, we develop a method to generate peptidic antagonists towards several aGPCRs. Collectively, our study provides structural and biochemical insights into the tethered activation mechanism of aGPCRs.


Asunto(s)
Péptidos , Receptores Acoplados a Proteínas G , Microscopía por Crioelectrón , Humanos , Péptidos/metabolismo , Dominios Proteicos , Receptores Acoplados a Proteínas G/metabolismo
5.
Nature ; 603(7900): 328-334, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35197632

RESUMEN

Effective antitumour immunity depends on the orchestration of potent T cell responses against malignancies1. Regression of human cancers has been induced by immune checkpoint inhibitors, T cell engagers or chimeric antigen receptor T cell therapies2-4. Although CD8 T cells function as key effectors of these responses, the role of CD4 T cells beyond their helper function has not been defined. Here we demonstrate that a trispecific antibody to HER2, CD3 and CD28 stimulates regression of breast cancers in a humanized mouse model through a mechanism involving CD4-dependent inhibition of tumour cell cycle progression. Although CD8 T cells directly mediated tumour lysis in vitro, CD4 T cells exerted antiproliferative effects by blocking cancer cell cycle progression at G1/S. Furthermore, when T cell subsets were adoptively transferred into a humanized breast cancer tumour mouse model, CD4 T cells alone inhibited HER2+ breast cancer growth in vivo. RNA microarray analysis revealed that CD4 T cells markedly decreased tumour cell cycle progression and proliferation, and also increased pro-inflammatory signalling pathways. Collectively, the trispecific antibody to HER2 induced T cell-dependent tumour regression through direct antitumour and indirect pro-inflammatory/immune effects driven by CD4 T cells.


Asunto(s)
Neoplasias de la Mama , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Antígenos CD28/metabolismo , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Femenino , Humanos , Ratones , Receptor ErbB-2/genética
6.
Nature ; 600(7887): 81-85, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34853456

RESUMEN

Understanding the structure and dynamic process of water at the solid-liquid interface is an extremely important topic in surface science, energy science and catalysis1-3. As model catalysts, atomically flat single-crystal electrodes exhibit well-defined surface and electric field properties, and therefore may be used to elucidate the relationship between structure and electrocatalytic activity at the atomic level4,5. Hence, studying interfacial water behaviour on single-crystal surfaces provides a framework for understanding electrocatalysis6,7. However, interfacial water is notoriously difficult to probe owing to interference from bulk water and the complexity of interfacial environments8. Here, we use electrochemical, in situ Raman spectroscopic and computational techniques to investigate the interfacial water on atomically flat Pd single-crystal surfaces. Direct spectral evidence reveals that interfacial water consists of hydrogen-bonded and hydrated Na+ ion water. At hydrogen evolution reaction (HER) potentials, dynamic changes in the structure of interfacial water were observed from a random distribution to an ordered structure due to bias potential and Na+ ion cooperation. Structurally ordered interfacial water facilitated high-efficiency electron transfer across the interface, resulting in higher HER rates. The electrolytes and electrode surface effects on interfacial water were also probed and found to affect water structure. Therefore, through local cation tuning strategies, we anticipate that these results may be generalized to enable ordered interfacial water to improve electrocatalytic reaction rates.

7.
Nature ; 592(7855): 616-622, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33567448

RESUMEN

Here we report on the antibody and memory B cell responses of a cohort of 20 volunteers who received the Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) vaccine against SARS-CoV-21-4. Eight weeks after the second injection of vaccine, volunteers showed high levels of IgM and IgG anti-SARS-CoV-2 spike protein (S) and receptor-binding-domain (RBD) binding titre. Moreover, the plasma neutralizing activity and relative numbers of RBD-specific memory B cells of vaccinated volunteers were equivalent to those of individuals who had recovered from natural infection5,6. However, activity against SARS-CoV-2 variants that encode E484K-, N501Y- or K417N/E484K/N501-mutant S was reduced by a small-but significant-margin. The monoclonal antibodies elicited by the vaccines potently neutralize SARS-CoV-2, and target a number of different RBD epitopes in common with monoclonal antibodies isolated from infected donors5-8. However, neutralization by 14 of the 17 most-potent monoclonal antibodies that we tested was reduced or abolished by the K417N, E484K or N501Y mutation. Notably, these mutations were selected when we cultured recombinant vesicular stomatitis virus expressing SARS-CoV-2 S in the presence of the monoclonal antibodies elicited by the vaccines. Together, these results suggest that the monoclonal antibodies in clinical use should be tested against newly arising variants, and that mRNA vaccines may need to be updated periodically to avoid a potential loss of clinical efficacy.


Asunto(s)
Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas Sintéticas/inmunología , Vacuna nCoV-2019 mRNA-1273 , Adulto , Anciano , Anticuerpos Monoclonales/sangre , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Vacuna BNT162 , Vacunas contra la COVID-19/genética , Microscopía por Crioelectrón , Epítopos de Linfocito B/química , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/ultraestructura , Femenino , Humanos , Inmunización Secundaria , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Memoria Inmunológica/inmunología , Masculino , Persona de Mediana Edad , Modelos Moleculares , Mutación , Pruebas de Neutralización , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Sintéticas/genética , Vacunas de ARNm
8.
Am J Hum Genet ; 110(4): 625-637, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36924774

RESUMEN

Genome-wide association studies (GWASs) have repeatedly reported multiple non-coding single-nucleotide polymorphisms (SNPs) at 2p14 associated with rheumatoid arthritis (RA), but their functional roles in the pathological mechanisms of RA remain to be explored. In this study, we integrated a series of bioinformatics and functional experiments and identified three intronic RA SNPs (rs1876518, rs268131, and rs2576923) within active enhancers that can regulate the expression of SPRED2 directly. At the same time, SPRED2 and ACTR2 influence each other as a positive feedback signal amplifier to strengthen the protective role in RA by inhibiting the migration and invasion of rheumatoid fibroblast-like synoviocytes (FLSs). In particular, the transcription factor CEBPB preferentially binds to the rs1876518-T allele to increase the expression of SPRED2 in FLSs. Our findings decipher the molecular mechanisms behind the GWAS signals at 2p14 for RA and emphasize SPRED2 as a potential candidate gene for RA, providing a potential target and direction for precise treatment of RA.


Asunto(s)
Artritis Reumatoide , Sinoviocitos , Humanos , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Proliferación Celular/genética , Células Cultivadas , Cromosomas , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Proteínas Represoras/genética , Sinoviocitos/metabolismo , Sinoviocitos/patología , Proteína 2 Relacionada con la Actina/metabolismo
9.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385872

RESUMEN

Drug discovery and development constitute a laborious and costly undertaking. The success of a drug hinges not only good efficacy but also acceptable absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties. Overall, up to 50% of drug development failures have been contributed from undesirable ADMET profiles. As a multiple parameter objective, the optimization of the ADMET properties is extremely challenging owing to the vast chemical space and limited human expert knowledge. In this study, a freely available platform called Chemical Molecular Optimization, Representation and Translation (ChemMORT) is developed for the optimization of multiple ADMET endpoints without the loss of potency (https://cadd.nscc-tj.cn/deploy/chemmort/). ChemMORT contains three modules: Simplified Molecular Input Line Entry System (SMILES) Encoder, Descriptor Decoder and Molecular Optimizer. The SMILES Encoder can generate the molecular representation with a 512-dimensional vector, and the Descriptor Decoder is able to translate the above representation to the corresponding molecular structure with high accuracy. Based on reversible molecular representation and particle swarm optimization strategy, the Molecular Optimizer can be used to effectively optimize undesirable ADMET properties without the loss of bioactivity, which essentially accomplishes the design of inverse QSAR. The constrained multi-objective optimization of the poly (ADP-ribose) polymerase-1 inhibitor is provided as the case to explore the utility of ChemMORT.


Asunto(s)
Aprendizaje Profundo , Humanos , Desarrollo de Medicamentos , Descubrimiento de Drogas , Inhibidores de Poli(ADP-Ribosa) Polimerasas
10.
Blood ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968152

RESUMEN

Currently, the role of DNA methylation in the IgM-monoclonal gammopathy disease spectrum remains poorly understood. In the present study, a multi-omics prospective analysis was conducted integrating DNA methylation, RNA-seq and WES data in 34 subjects [23 WM, 6 IgM-MGUS, 5 normal controls]. Analysis was focused on defining differences between IgM-gammopathies (WM/IgM-MGUS) compared to controls, and specifically between WM and IgM-MGUS. Between groups, genome-wide DNA methylation analysis demonstrated a significant number of differentially methylated regions which were annotated according to genomic region. Next, integration of RNA-seq data was performed to identify potentially epigenetically deregulated pathways. We found that pathways involved in cell cycle, metabolism, cytokine/immune signaling, cytoskeleton, tumor microenvironment, and intracellular signaling were differentially activated and potentially epigenetically regulated. Importantly, there was a positive enrichment of CXCR4 signaling pathway along with several interleukin (IL-6, IL-8, IL15) signaling pathways in WM compared to IgM-MGUS. Further assessment of known tumor suppressor genes and oncogenes uncovered differential promoter methylation of several targets with concordant change in gene expression, including CCND1 and CD79B. Overall, this report defines how aberrant DNA methylation in IgM-gammopathies may play a critical role in the epigenetic control of oncogenesis and key cellular functions.

11.
Circ Res ; 134(2): 165-185, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38166463

RESUMEN

BACKGROUND: Atherosclerosis is a globally prevalent chronic inflammatory disease with high morbidity and mortality. The development of atherosclerotic lesions is determined by macrophages. This study aimed to investigate the specific role of myeloid-derived CD147 (cluster of differentiation 147) in atherosclerosis and its translational significance. METHODS AND RESULTS: We generated mice with a myeloid-specific knockout of CD147 and mice with restricted CD147 overexpression, both in an apoE-deficient (ApoE-/-) background. Here, the myeloid-specific deletion of CD147 ameliorated atherosclerosis and inflammation. Consistent with our in vivo data, macrophages isolated from myeloid-specific CD147 knockout mice exhibited a phenotype shift from proinflammatory to anti-inflammatory macrophage polarization in response to lipopolysaccharide/IFN (interferon)-γ. These macrophages demonstrated a weakened proinflammatory macrophage phenotype, characterized by reduced production of NO and reactive nitrogen species derived from iNOS (inducible NO synthase). Mechanistically, the TRAF6 (tumor necrosis factor receptor-associated factor 6)-IKK (inhibitor of κB kinase)-IRF5 (IFN regulatory factor 5) signaling pathway was essential for the effect of CD147 on proinflammatory responses. Consistent with the reduced size of the necrotic core, myeloid-specific CD147 deficiency diminished the susceptibility of iNOS-mediated late apoptosis, accompanied by enhanced efferocytotic capacity mediated by increased secretion of GAS6 (growth arrest-specific 6) in proinflammatory macrophages. These findings were consistent in a mouse model with myeloid-restricted overexpression of CD147. Furthermore, we developed a new atherosclerosis model in ApoE-/- mice with humanized CD147 transgenic expression and demonstrated that the administration of an anti-human CD147 antibody effectively suppressed atherosclerosis by targeting inflammation and efferocytosis. CONCLUSIONS: Myeloid CD147 plays a crucial role in the growth of plaques by promoting inflammation in a TRAF6-IKK-IRF5-dependent manner and inhibiting efferocytosis by suppressing GAS6 during proinflammatory conditions. Consequently, the use of anti-human CD147 antibodies presents a complementary therapeutic approach to the existing lipid-lowering strategies for treating atherosclerotic diseases.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Ratones , Animales , Eferocitosis , Factor 6 Asociado a Receptor de TNF/metabolismo , Aterosclerosis/metabolismo , Inflamación/genética , Ratones Noqueados , Fenotipo , Apolipoproteínas E , Factores Reguladores del Interferón/genética , Ratones Endogámicos C57BL
12.
Mol Biol Evol ; 41(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39041196

RESUMEN

Cyanobacteriota, the sole prokaryotes capable of oxygenic photosynthesis (OxyP), occupy a unique and pivotal role in Earth's history. While the notion that OxyP may have originated from Cyanobacteriota is widely accepted, its early evolution remains elusive. Here, by using both metagenomics and metatranscriptomics, we explore 36 metagenome-assembled genomes from hot spring ecosystems, belonging to two deep-branching cyanobacterial orders: Thermostichales and Gloeomargaritales. Functional investigation reveals that Thermostichales encode the crucial thylakoid membrane biogenesis protein, vesicle-inducing protein in plastids 1 (Vipp1). Based on the phylogenetic results, we infer that the evolution of the thylakoid membrane predates the divergence of Thermostichales from other cyanobacterial groups and that Thermostichales may be the most ancient lineage known to date to have inherited this feature from their common ancestor. Apart from OxyP, both lineages are potentially capable of sulfide-driven AnoxyP by linking sulfide oxidation to the photosynthetic electron transport chain. Unexpectedly, this AnoxyP capacity appears to be an acquired feature, as the key gene sqr was horizontally transferred from later-evolved cyanobacterial lineages. The presence of two D1 protein variants in Thermostichales suggests the functional flexibility of photosystems, ensuring their survival in fluctuating redox environments. Furthermore, all MAGs feature streamlined phycobilisomes with a preference for capturing longer-wavelength light, implying a unique evolutionary trajectory. Collectively, these results reveal the photosynthetic flexibility in these early-diverging cyanobacterial lineages, shedding new light on the early evolution of Cyanobacteriota and their photosynthetic processes.


Asunto(s)
Cianobacterias , Fotosíntesis , Fotosíntesis/genética , Cianobacterias/genética , Cianobacterias/metabolismo , Evolución Biológica , Filogenia , Oxígeno/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Evolución Molecular
14.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34969844

RESUMEN

Deoxypodophyllotoxin contains a core of four fused rings (A to D) with three consecutive chiral centers, the last being created by the attachment of a peripheral trimethoxyphenyl ring (E) to ring C. Previous studies have suggested that the iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenase, deoxypodophyllotoxin synthase (DPS), catalyzes the oxidative coupling of ring B and ring E to form ring C and complete the tetracyclic core. Despite recent efforts to deploy DPS in the preparation of deoxypodophyllotoxin analogs, the mechanism underlying the regio- and stereoselectivity of this cyclization event has not been elucidated. Herein, we report 1) two structures of DPS in complex with 2OG and (±)-yatein, 2) in vitro analysis of enzymatic reactivity with substrate analogs, and 3) model reactions addressing DPS's catalytic mechanism. The results disfavor a prior proposal of on-pathway benzylic hydroxylation. Rather, the DPS-catalyzed cyclization likely proceeds by hydrogen atom abstraction from C7', oxidation of the benzylic radical to a carbocation, Friedel-Crafts-like ring closure, and rearomatization of ring B by C6 deprotonation. This mechanism adds to the known pathways for transformation of the carbon-centered radical in Fe/2OG enzymes and suggests what types of substrate modification are likely tolerable in DPS-catalyzed production of deoxypodophyllotoxin analogs.


Asunto(s)
Berberidaceae/enzimología , Medicamentos Herbarios Chinos/química , Ligasas/química , Proteínas de Plantas/química , Podofilotoxina/análogos & derivados , Oxidación-Reducción , Podofilotoxina/química
15.
J Cell Mol Med ; 28(8): e18291, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38597412

RESUMEN

Natural immunoglobulin M (IgM) antibodies have been shown to recognize post-ischemic neoepitopes following reperfusion of tissues and to activate complement. Specifically, IgM antibodies and complement have been shown to drive hepatic ischemia reperfusion injury (IRI). Herein, we investigate the therapeutic effect of C2 scFv (single-chain antibody construct with specificity of a natural IgM antibody) on hepatic IRI in C57BL/6 mice. Compared with PBS-treated mice, C2 scFv-treated mice displayed almost no necrotic areas, significant reduction in serum ALT, AST and LDH levels, and significantly reduced in the number of TUNEL positive cells. Moreover, C2 scFv-treated mice exhibited a notable reduction in inflammatory cells after hepatic IRI than PBS-treated mice. The serum IL-6, IL-1ß, TNF-α and MPC-1 levels were also severely suppressed by C2 scFv. Interestingly, C2 scFv reconstituted hepatic inflammation and IRI in Rag1-/- mice. We found that C2 scFv promoted hepatic cell death and increased inflammatory cytokines and infiltration of inflammatory cells after hepatic IRI in Rag1-/- mice. In addition, IgM and complement 3d (C3d) were deposited in WT mice and in Rag1-/- mice reconstituted with C2 scFv, indicating that C2 scFv can affect IgM binding and complement activation and reconstitute hepatic IRI. C3d expression was significantly lower in C57BL/6 mice treated with C2 scFv compared to PBS, indicating that excessive exogenous C2 scFv inhibited complement activation. These data suggest that C2 scFv alleviates hepatic IRI by blocking complement activation, and treatment with C2 scFv may be a promising therapy for hepatic IRI.


Asunto(s)
Hígado , Daño por Reperfusión , Animales , Ratones , Ratones Endogámicos C57BL , Hígado/metabolismo , Inmunoglobulina M , Proteínas del Sistema Complemento , Proteínas de Homeodominio/metabolismo
16.
J Cell Mol Med ; 28(16): e70017, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39159071

RESUMEN

Acute myeloid leukaemia (AML) is a common and highly aggressive haematological malignancy in adults. Senescence-associated secretory phenotype (SASP) plays important roles in tumorigenesis and progression of tumour. However, the prognostic value of SASP in patients with AML has not been clarified. The present study aims to explore the prognostic value of SASP and develop a prognostic risk signature for AML. The RNA-sequencing data was collected from the TCGA, GTEx and TARGET databases. Subsequently, differentially expressed gene analysis, univariate Cox regression and LASSO regression were applied to identified prognostic SASP-related genes and construct a prognostic risk-scoring model. The risk score of each patient were calculated and patients were divided into high- or low-risk groups by the median risk score. This novel prognostic signature included 11 genes: G6PD, CDK4, RPS6KA1, UBC, H2BC12, KIR2DL4, HSF1, IFIT3, PIM1, RUNX3 and TRIM21. The patients with AML in the high-risk group had shorter OS, demonstrating that the risk score acted as a prognostic predictor, which was validated in the TAGET-AML dataset. Univariate and multivariate analysis revealed the risk score was an independent prognostic factor in patients with AML. Furthermore, the present study revealed that the risk score was associated with immune landscape, immune checkpoint gene expression and chemotherapeutic efficacy. In the present study, we constructed and validated a unique SASP-related prognostic model to assess therapeutic effect and prognosis in patients with AML, which might contribute to understanding the role of SASP in AML and guiding the treatment for AML.


Asunto(s)
Biomarcadores de Tumor , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/mortalidad , Pronóstico , Femenino , Biomarcadores de Tumor/genética , Masculino , Perfilación de la Expresión Génica , Persona de Mediana Edad , Regulación Leucémica de la Expresión Génica , Transcriptoma/genética , Adulto , Factores de Riesgo
17.
BMC Genomics ; 25(1): 337, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38641568

RESUMEN

BACKGROUND: Larval settlement and metamorphosis represent critical events in the life history of marine benthic animals. Myoinhibitory peptide (MIP) plays a pivotal role in larval settlement of marine invertebrates. However, the molecular mechanisms of MIP involved in this process are not well understood. RESULTS: In this study, we evaluated the effects of thirteen MIP mature peptides on triggering the larval settlement of Urechis unicinctus (Xenopneusta, Urechidae), and determined that MIP2 was the principal neuropeptide. Transcriptomic analysis was employed to identify differentially expressed genes (DEGs) between the MIP2-treated larvae and normal early-segmentation larvae. Both cAMP and calcium signaling pathways were enriched in the DEGs of the MIP2-treated larvae, and two neuropeptide receptor genes (Spr, Fmrfar) were up-regulated in the MIP2-treated larvae. The activation of the SPR-cAMP pathway by MIP2 was experimentally validated in HEK293T cells. Furthermore, fourteen cilia-related genes, including Tctex1d2, Cfap45, Ift43, Ift74, Ift22, Cav1 and Mns1, etc. exhibited down-regulated expression in the MIP2-treated larvae. Whole-mount in situ hybridization identified two selected ciliary genes, Tctex1d2 and Cfap45, were specially expressed in circumoral ciliary cells of the early-segmentation larvae. Knocking down Tctex1d2 mRNA levels by in vivo RNA interference significantly increased the larval settlement rate. CONCLUSION: Our findings suggest that MIP2 inhibits the function of the cilia-related genes, such as Tctex1d2, through the SPR-cAMP-PKA pathway, thereby inducing larval settlement in U. unicinctus. The study contributes important data to the understanding of neuropeptide regulation in larval settlement.


Asunto(s)
Neuropéptidos , Poliquetos , Humanos , Animales , Larva/genética , Células HEK293 , Poliquetos/genética , Neuropéptidos/genética , Neuropéptidos/química , Perfilación de la Expresión Génica
18.
BMC Genomics ; 25(1): 189, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368357

RESUMEN

BACKGROUND: CRISPR-Cas9 technology has advanced in vivo gene therapy for disorders like hemophilia A, notably through the successful targeted incorporation of the F8 gene into the Alb locus in hepatocytes, effectively curing this disorder in mice. However, thoroughly evaluating the safety and specificity of this therapy is essential. Our study introduces a novel methodology to analyze complex insertion sequences at the on-target edited locus, utilizing barcoded long-range PCR, CRISPR RNP-mediated deletion of unedited alleles, magnetic bead-based long amplicon enrichment, and nanopore sequencing. RESULTS: We identified the expected F8 insertions and various fragment combinations resulting from the in vivo linearization of the double-cut plasmid donor. Notably, our research is the first to document insertions exceeding ten kbp. We also found that a small proportion of these insertions were derived from sources other than donor plasmids, including Cas9-sgRNA plasmids, genomic DNA fragments, and LINE-1 elements. CONCLUSIONS: Our study presents a robust method for analyzing the complexity of on-target editing, particularly for in vivo long insertions, where donor template integration can be challenging. This work offers a new tool for quality control in gene editing outcomes and underscores the importance of detailed characterization of edited genomic sequences. Our findings have significant implications for enhancing the safety and effectiveness of CRISPR-Cas9 gene therapy in treating various disorders, including hemophilia A.


Asunto(s)
Hemofilia A , Secuenciación de Nanoporos , Ratones , Animales , Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Hemofilia A/genética , Hemofilia A/terapia , Edición Génica/métodos , ADN
19.
BMC Genomics ; 25(1): 797, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179980

RESUMEN

BACKGROUND: R2R3-MYB transcription factors belong to one of the largest gene subfamilies in plants, and they are involved in diverse biological processes. However, the role of R2R3-MYB transcription factor subfamily genes in the response of rice (Oryza sativa L.) to salt stress has been rarely reported. RESULTS: In this study, we performed a genome-wide characterization and expression identification of rice R2R3-MYB transcription factor subfamily genes. We identified a total of 117 R2R3-MYB genes in rice and characterized their gene structure, chromosomal location, and cis-regulatory elements. According to the phylogenetic relationships and amino acid sequence homologies, the R2R3-MYB genes were divided into four groups. qRT-PCR of the R2R3-MYB genes showed that the expression levels of 10 genes significantly increased after 3 days of 0.8% NaCl treatment. We selected a high expression gene OsMYB2-115 for further analysis. OsMYB2-115 was highly expressed in the roots, stem, leaf, and leaf sheath. OsMYB2-115 was found to be localized in the nucleus, and the yeast hybrid assay showed that OsMYB2-115 has transcriptional activation activity. CONCLUSION: This result provides important information for the functional analyses of rice R2R3-MYB transcription factor subfamily genes related to the salt stress response and reveals that OsMYB2-115 may be an important gene associated with salt tolerance in rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Filogenia , Proteínas de Plantas , Estrés Salino , Factores de Transcripción , Oryza/genética , Oryza/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Familia de Multigenes , Perfilación de la Expresión Génica , Cromosomas de las Plantas/genética
20.
J Am Chem Soc ; 146(12): 8706-8715, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38487838

RESUMEN

Metal nanoclusters (MNCs) represent a promising class of materials for catalytic carbon dioxide and proton reduction as well as dihydrogen oxidation. In such reactions, multiple proton-coupled electron transfer (PCET) processes are typically involved, and the current understanding of PCET mechanisms in MNCs has primarily focused on the sequential transfer mode. However, a concerted transfer pathway, i.e., concerted electron-proton transfer (CEPT), despite its potential for a higher catalytic rate and lower reaction barrier, still lacks comprehensive elucidation. Herein, we introduce an experimental paradigm to test the feasibility of the CEPT process in MNCs, by employing Au18(SR)14 (SR denotes thiolate ligand), Au22(SR)18, and Au25(SR)18- as model clusters. Detailed investigations indicate that the photoinduced PCET reactions in the designed system proceed via an CEPT pathway. Furthermore, the rate constants of gold nanoclusters (AuNCs) have been found to be correlated with both the size of the cluster and the flexibility of the Au-S framework. This newly identified PCET behavior in AuNCs is prominently different from that observed in semiconductor quantum dots and plasmonic metal nanoparticles. Our findings are of crucial importance for unveiling the catalytic mechanisms of quantum-confined metal nanomaterials and for the future rational design of more efficient catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA