Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Mol Microbiol ; 91(1): 110-20, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24261685

RESUMEN

Protein biotinylation is catalysed by biotin protein ligase (BPL). The most characterized BPL is from Escherichia coli where it functions as both a biotin ligase and a homodimeric transcriptional repressor. Here we investigated another bifunctional BPL from the clinically important Staphylococcus aureus (SaBPL). Unliganded SaBPL (apo) exists in a dimer-monomer equilibrium at low micromolar concentrations - a stark contrast to E. coli BPL (EcBPL) that is monomeric under the same conditions. EMSA and SAXS analysis demonstrated that dimeric apo SaBPL adopted a conformation that was competent to bind DNA and necessary for it to function as a transcription factor. The SaBPL dimer-monomer dissociation constant was 5.8-fold tighter when binding the inhibitor biotin acetylene, but unchanged with biotin. F123, located in the dimer interface, was critical for homodimerization. Inhibition studies together with surface plasmon resonance analyses revealed a strong correlation between inhibitor potency and slow dissociation kinetics. A 24-fold difference in Ki values for these two enzymes was explained by differences in enzyme:inhibitor dissociation rates. Substitution of F123 in SaBPL and its equivalent in EcBPL altered both inhibitor potency and dissociation. Hence, F123 in SaBPL has novel roles in both protein dimerization and ligand-binding that have not been reported in EcBPL.


Asunto(s)
Sitios de Unión/fisiología , Biotina/metabolismo , Ligasas/química , Ligasas/metabolismo , Fenilalanina/metabolismo , Staphylococcus aureus/enzimología , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Biotina/antagonistas & inhibidores , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ligandos , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Dispersión del Ángulo Pequeño , Staphylococcus aureus/genética , Resonancia por Plasmón de Superficie , Difracción de Rayos X
2.
J Biol Chem ; 287(21): 17823-17832, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-22437830

RESUMEN

There is a well documented need to replenish the antibiotic pipeline with new agents to combat the rise of drug resistant bacteria. One strategy to combat resistance is to discover new chemical classes immune to current resistance mechanisms that inhibit essential metabolic enzymes. Many of the obvious drug targets that have no homologous isozyme in the human host have now been investigated. Bacterial drug targets that have a closely related human homologue represent a new frontier in antibiotic discovery. However, to avoid potential toxicity to the host, these inhibitors must have very high selectivity for the bacterial enzyme over the human homolog. We have demonstrated that the essential enzyme biotin protein ligase (BPL) from the clinically important pathogen Staphylococcus aureus could be selectively inhibited. Linking biotin to adenosine via a 1,2,3 triazole yielded the first BPL inhibitor selective for S. aureus BPL over the human equivalent. The synthesis of new biotin 1,2,3-triazole analogues using click chemistry yielded our most potent structure (K(i) 90 nM) with a >1100-fold selectivity for the S. aureus BPL over the human homologue. X-ray crystallography confirmed the mechanism of inhibitor binding. Importantly, the inhibitor showed cytotoxicity against S. aureus but not cultured mammalian cells. The biotin 1,2,3-triazole provides a novel pharmacophore for future medicinal chemistry programs to develop this new antibiotic class.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Biotina , Farmacorresistencia Bacteriana/efectos de los fármacos , Inhibidores Enzimáticos , Ligasas/antagonistas & inhibidores , Staphylococcus aureus/enzimología , Triazoles , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biotina/química , Biotina/farmacología , Línea Celular , Química Clic , Cristalografía por Rayos X , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Ligasas/química , Ligasas/metabolismo , Unión Proteica , Triazoles/síntesis química , Triazoles/química , Triazoles/farmacocinética
3.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 12): 1640-3, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21139214

RESUMEN

Grb7 is an adapter protein that is involved in signalling pathways that mediate eukaryotic cell proliferation and migration. Its overexpression in several cancer types has implicated it in cancer progression and led to the development of the G7-18NATE cyclic peptide inhibitor. Here, the preparation of crystals of G7-18NATE in complex with its Grb7 SH2 domain target is reported. Crystals of the complex were grown by the hanging-drop vapour-diffusion method using PEG 3350 as the precipitant at room temperature. X-ray diffraction data were collected from crystals to 2.4 Šresolution using synchrotron X-ray radiation at 100 K. The diffraction was consistent with space group P2(1), with unit-cell parameters a=52.7, b=79.1, c=54.7 Å, α=γ=90.0, ß=104.4°. The structure of the G7-18NATE peptide in complex with its target will facilitate the rational development of Grb7-targeted cancer therapeutics.


Asunto(s)
Proteína Adaptadora GRB7/antagonistas & inhibidores , Proteína Adaptadora GRB7/química , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Dominios Homologos src , Cristalización , Cristalografía por Rayos X , Humanos , Fosforilación/efectos de los fármacos
4.
Tuberculosis (Edinb) ; 95(3): 259-66, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25801336

RESUMEN

Dethiobiotin synthetase (DTBS) plays a crucial role in biotin biosynthesis in microorganisms, fungi, and plants. Due to its importance in bacterial pathogenesis, and the absence of a human homologue, DTBS is a promising target for the development of new antibacterials desperately needed to combat antibiotic resistance. Here we report the first X-ray structure of DTBS from Mycobacterium tuberculosis (MtDTBS) bound to a nucleotide triphosphate (CTP). The nucleoside base is stabilized in its pocket through hydrogen-bonding interactions with the protein backbone, rather than amino acid side chains. This resulted in the unexpected finding that MtDTBS could utilise ATP, CTP, GTP, ITP, TTP, or UTP with similar Km and kcat values, although the enzyme had the highest affinity for CTP in competitive binding and surface plasmon resonance assays. This is in contrast to other DTBS homologues that preferentially bind ATP primarily through hydrogen-bonds between the purine base and the carboxamide side chain of a key asparagine. Mutational analysis performed alongside in silico experiments revealed a gate-keeper role for Asn175 in Escherichia coli DTBS that excludes binding of other nucleotide triphosphates. Here we provide evidence to show that MtDTBS has a broad nucleotide specificity due to the absence of the gate-keeper residue.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ligasas de Carbono-Nitrógeno/metabolismo , Mycobacterium tuberculosis/enzimología , Nucleótidos/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/genética , Dominio Catalítico , Simulación por Computador , Cristalografía por Rayos X , Escherichia coli/enzimología , Escherichia coli/genética , Enlace de Hidrógeno , Cinética , Mutagénesis Sitio-Dirigida , Mutación , Mycobacterium tuberculosis/genética , Conformación Proteica , Especificidad por Sustrato
5.
ACS Med Chem Lett ; 6(2): 216-20, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25699152

RESUMEN

An improved synthesis of biotinol-5'-AMP, an acyl-AMP mimic of the natural reaction intermediate of biotin protein ligase (BPL), is reported. This compound was shown to be a pan inhibitor of BPLs from a series of clinically important bacteria, particularly Staphylococcus aureus and Mycobacterium tuberculosis, and kinetic analysis revealed it to be competitive against the substrate biotin. Biotinol-5'-AMP also exhibits antibacterial activity against a panel of clinical isolates of S. aureus and M. tuberculosis with MIC values of 1-8 and 0.5-2.5 µg/mL, respectively, while being devoid of cytotoxicity to human HepG2 cells.

6.
Curr Top Med Chem ; 14(1): 4-20, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24236729

RESUMEN

Biotin protein ligase (BPL) represents a promising target for the discovery of new antibacterial chemotherapeutics. Here we review the central role of BPL for the survival and virulence of clinically important Staphylococcus aureus in support of this claim. X-ray crystallography structures of BPLs in complex with ligands and small molecule inhibitors provide new insights into the mechanism of protein biotinylation, and a template for structure guided approaches to the design of inhibitors for antibacterial discovery. Most BPLs employ an ordered ligand binding mechanism for the synthesis of the reaction intermediate biotinyl-5´-AMP from substrates biotin and ATP. Recent studies reporting chemical analogs of biotin and biotinyl-5´-AMP as BPL inhibitors that represent new classes of anti-S. aureus agents are reviewed. We highlight strategies to selectively inhibit bacterial BPL over the mammalian equivalent using a 1,2,3-triazole isostere to replace the labile phosphoanhydride naturally present in biotinyl-5´-AMP. A novel in situ approach to improve the detection of triazole-based inhibitors is also presented that could potentially be widely applied to other protein targets.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Biotina/metabolismo , Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Ligasas de Carbono-Nitrógeno/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Acetil-CoA Carboxilasa/metabolismo , Adenosina Trifosfato/metabolismo , Biotina/análogos & derivados , Dominio Catalítico , Cristalografía por Rayos X , Diseño de Fármacos , Descubrimiento de Drogas , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Terapia Molecular Dirigida , Conformación Proteica , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/química , Staphylococcus aureus/efectos de los fármacos
7.
Protein Sci ; 22(6): 762-73, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23559560

RESUMEN

The essential metabolic enzyme biotin protein ligase (BPL) is a potential target for the development of new antibiotics required to combat drug-resistant pathogens. Staphylococcus aureus BPL (SaBPL) is a bifunctional protein, possessing both biotin ligase and transcription repressor activities. This positions BPL as a key regulator of several important metabolic pathways. Here, we report the structural analysis of both holo- and apo-forms of SaBPL using X-ray crystallography. We also present small-angle X-ray scattering data of SaBPL in complex with its biotin-carboxyl carrier protein substrate as well as the SaBPL:DNA complex that underlies repression. This has revealed the molecular basis of ligand (biotinyl-5'-AMP) binding and conformational changes associated with catalysis and repressor function. These data provide new information to better understand the bifunctional activities of SaBPL and to inform future strategies for antibiotic discovery.


Asunto(s)
Biotina/metabolismo , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/metabolismo , Staphylococcus aureus/enzimología , Acetil-CoA Carboxilasa/metabolismo , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/metabolismo , Secuencia de Aminoácidos , Biotina/análogos & derivados , Cristalografía por Rayos X , Acido Graso Sintasa Tipo II/metabolismo , Humanos , Datos de Secuencia Molecular , Mapas de Interacción de Proteínas , Multimerización de Proteína , Alineación de Secuencia , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo
8.
ACS Med Chem Lett ; 3(6): 509-14, 2012 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-24900501

RESUMEN

There is a desperate need to develop new antibiotic agents to combat the rise of drug-resistant bacteria, such as clinically important Staphylococcus aureus. The essential multifunctional enzyme, biotin protein ligase (BPL), is one potential drug target for new antibiotics. We report the synthesis and characterization of a series of biotin analogues with activity against BPLs from S. aureus, Escherichia coli, and Homo sapiens. Two potent inhibitors with K i < 100 nM were identified with antibacterial activity against a panel of clinical isolates of S. aureus (MIC 2-16 µg/mL). Compounds with high ligand efficiency and >20-fold selectivity between the isozymes were identified and characterized. The antibacterial mode of action was shown to be via inhibition of BPL. The bimolecular interactions between the BPL and the inhibitors were defined by surface plasmon resonance studies and X-ray crystallography. These findings pave the way for second-generation inhibitors and antibiotics with greater potency and selectivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA