Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Small ; 20(4): e2305748, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37712175

RESUMEN

The rapid transmission and numerous re-emerging human influenza virus variants that spread via the respiratory system have led to severe global damage, emphasizing the need for detection tools that can recognize active and intact virions with infectivity. Here, this work presents a plasmonic vesicle-mediated fusogenic immunoassay (PVFIA) comprising gold nanoparticle (GNP) encapsulating fusogenic polymeric vesicles (plasmonic vesicles; PVs) for the label-free and colorimetric detection of influenza A virus (IAV). The PVFIA combines two sequential assays: a biochip-based immunoassay for target-specific capture and a PV-induced fusion assay for color change upon the IAV-PV fusion complex formation. The PVFIA demonstrates excellent specificity in capturing the target IAV, while the fusion conditions and GNP induce a significant color change, enabling visual detection. The integration of two consecutive assays results in a low detection limit (100.7919 EID50 mL-1 ) and good reliability (0.9901), indicating sensitivity that is 104.208 times higher than conventional immunoassay. Leveraging the PV viral membrane fusion activity renders the PVFIA promising for point-of-care diagnostics through colorimetric detection. The innovative approach addresses the critical need for detecting active and intact virions with infectivity, providing a valuable tool with which to combat the spread of the virus.


Asunto(s)
Virus de la Influenza A , Nanopartículas del Metal , Humanos , Colorimetría/métodos , Oro , Reproducibilidad de los Resultados
2.
Emerg Infect Dis ; 29(4): 782-785, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36848871

RESUMEN

We assessed susceptibility of dogs to SARS-COV-2 Delta and Omicron variants by experimentally inoculating beagle dogs. Moreover, we investigated transmissibility of the variants from infected to naive dogs. The dogs were susceptible to infection without clinical signs and transmitted both strains to other dogs through direct contact.


Asunto(s)
COVID-19 , Animales , Perros , COVID-19/veterinaria , SARS-CoV-2
3.
Small ; 19(26): e2207117, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36960666

RESUMEN

African swine fever virus (ASFV) is a severe and persistent threat to the global swine industry. As there are no vaccines against ASFV, there is an immense need to develop easy-to-use, cost-effective, and rapid point-of-care (POC) diagnostic platforms to detect and prevent ASFV outbreaks. Here, a novel POC diagnostic system based on affinity column chromatography for the optical detection of ASFV is presented. This system employs an on-particle hairpin chain reaction to sensitize magnetic nanoclusters with long DNA strands in a target-selective manner, which is subsequently fed into a column chromatography device to produce quantitatively readable and colorimetric signals. The detection approach does not require expensive analytical apparatus or immobile instrumentation. The system can detect five genes constituting the ASFV whole genome with a detection limit of ≈19.8 pm in swine serum within 30 min at laboratory room temperature. With an additional pre-amplification step using polymerase chain reaction (PCR), the assay is successfully applied to detect the presence of ASFV in 30 suspected swine samples with 100% sensitivity and specificity, similar to quantitative PCR. Thus, this simple, inexpensive, portable, robust, and customizable platform for the early detection of ASFV can facilitate the timely surveillance and implementation of control measures.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/diagnóstico , Reacción en Cadena de la Polimerasa/métodos , Cromatografía de Afinidad , Sensibilidad y Especificidad , Fenómenos Magnéticos
4.
Virol J ; 20(1): 285, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041113

RESUMEN

BACKGROUND: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has challenged the effectiveness of current therapeutic regimens. Here, we aimed to develop a potent SARS-CoV-2 antibody with broad neutralizing effect by screening a scFv library with the spike protein receptor-binding domain (RBD) via phage display. METHODS: SKAI-DS84 was identified through phage display, and we performed pseudovirus neutralization assays, authentic virus neutralization assays, and in vivo neutralization efficacy evaluations. Furthermore, surface plasmon resonance (SPR) analysis was conducted to assess the physical characteristics of the antibody, including binding kinetics and measure its affinity for variant RBDs. RESULTS: The selected clones were converted to human IgG, and among them, SKAI-DS84 was selected for further analyses based on its binding affinity with the variant RBDs. Using pseudoviruses, we confirmed that SKAI-DS84 was strongly neutralizing against wild-type, B.1.617.2, B.1.1.529, and subvariants of SARS-CoV-2. We also tested the neutralizing effect of SKAI-DS84 on authentic viruses, in vivo and observed a reduction in viral replication and improved lung pathology. We performed binding and epitope mapping experiments to understand the mechanisms underlying neutralization and identified quaternary epitopes formed by the interaction between RBDs as the target of SKAI-DS84. CONCLUSIONS: We identified, produced, and tested the neutralizing effect of SKAI-DS84 antibody. Our results highlight that SKAI-DS84 could be a potential neutralizing antibody against SARS-CoV-2 and its variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticuerpos Monoclonales , Pruebas de Neutralización , Receptores Virales/metabolismo , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/química
5.
Pulm Pharmacol Ther ; 80: 102189, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36634813

RESUMEN

Throughout the recent COVID-19 pandemic, South Korea led national efforts to develop vaccines and therapeutics for SARS-CoV-2. The project proceeded as follows: 1) evaluation system setup (including Animal Biosafety Level 3 (ABSL3) facility alliance, standardized nonclinical evaluation protocol, and laboratory information management system), 2) application (including committee review and selection), and 3) evaluation (including expert judgment and reporting). After receiving 101 applications, the selection committee reviewed pharmacokinetics, toxicity, and efficacy data and selected 32 final candidates. In the nonclinical efficacy test, we used golden Syrian hamsters and human angiotensin-converting enzyme 2 transgenic mice under a cytokeratin 18 promoter to evaluate mortality, clinical signs, body weight, viral titer, neutralizing antibody presence, and histopathology. These data indicated eight new drugs and one repositioned drug having significant efficacy for COVID-19. Three vaccine and four antiviral drugs exerted significant protective activities against SARS-CoV-2 pathogenesis. Additionally, two anti-inflammatory drugs showed therapeutic effects on lung lesions and weight loss through their mechanism of action but did not affect viral replication. Along with systematic verification of COVID-19 animal models through large-scale studies, our findings suggest that ABSL3 multicenter alliance and nonclinical evaluation protocol standardization can promote reliable efficacy testing against COVID-19, thus expediting medical product development.


Asunto(s)
COVID-19 , Animales , Cricetinae , Ratones , Humanos , SARS-CoV-2 , Pandemias , Anticuerpos Neutralizantes , Mesocricetus , Modelos Animales de Enfermedad
6.
Analyst ; 147(22): 5028-5037, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36190457

RESUMEN

The continued uncertainty of emerging infectious viral diseases has led to an extraordinary urgency to develop advanced molecular diagnostic tests that are faster, more reliable, simpler to use, and readily available than traditional methods. This study presents a system that can accurately and rapidly trace viral nucleic acids by employing flap endonuclease 1 (FEN1)-assisted specific DNA cleavage reactions and surface-enhanced Raman scattering (SERS)-based analysis. The designed Raman tag-labeled 5'- and 3'-flap provider DNA yielded structurally defined DNA substrates on magnetic nanoparticle surfaces when a target was present. The FEN1 enzyme subsequently processes the substrates formed via an invasive cleavage reaction, producing 5'-flap DNA products. Magnetic separation allows efficient purification of flap products from reaction mixtures. The isolated solution was directly applied onto high aspect-ratio plasmonic silver nanopillars serving as SERS-active substrates to induce amplified SERS signals. We verified the developed SERS-based sensing system using a synthetic target complementary to an avian influenza A (H9N2) virus gene and examined the detection performance of the system using complementary DNA (cDNA) derived from H9N2 viral RNA. As a result, we could detect a synthetic target with a detection limit of 41.1 fM with a single base-pair discrimination ability and achieved multiplexed detection capability for two targets. Using cDNA samples from H9N2 viruses, we observed a high concordance of R2 = 0.917 between the data obtained from SERS and the quantitative polymerase chain reaction. We anticipate that this enzyme-assisted SERS sensor may provide insights into the development of high-performance molecular diagnostic tools that can respond rapidly to viral pathogens.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Nanopartículas del Metal , Ácidos Nucleicos , Animales , Espectrometría Raman/métodos , Oro/química , Endonucleasas de ADN Solapado , ADN Complementario , ADN/análisis , Nanopartículas del Metal/química
7.
Environ Res ; 204(Pt B): 112036, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34529972

RESUMEN

A practical scale photocatalytic air purifier equipped with a TiO2/H-ZSM-5 composite bead filter was demonstrated to be able to effectively remove indoor volatile organic compounds (VOCs) and viruses with sustainable performances under UVA-LED illumination. TiO2 hybridized with 5 wt% H-ZSM-5 zeolite significantly enhanced its photocatalytic activity for degrading VOCs including formaldehyde, acetaldehyde, and toluene, than bare TiO2. H-ZSM-5 provided strong adsorption sites for these compounds, thus accelerating their photocatalytic conversion into CO2 by adjacent TiO2 photocatalyst. Moreover, owing to its superior adsorption capacity, the composite bead filter completely prevented the emission of formaldehyde produced by photocatalytic oxidation of toluene. The sustainability of this composite bead filter for VOC removal was confirmed by regeneration and accelerated durability tests. In addition, the photocatalytic air purifier was effective in removing aerosolized viral particles of bacteriophage Phi-X 174. It was confirmed that the viruses on filter surfaces were completely inactivated by photocatalytic oxidation. TiO2/H-ZSM-5 composite beads also exhibited excellent efficacies for inactivation of pathogenic coronaviruses including SARS-CoV-2. The photocatalytic process degraded viral RNAs of SARS-CoV-2 by more than 99.999% in 1 h, eliminating the viral infectivity. Results of this study suggest that the air purifier equipped with the composite bead filter is ready for practical applications for home and hospital uses.


Asunto(s)
Filtros de Aire , COVID-19 , Compuestos Orgánicos Volátiles , Zeolitas , Catálisis , Humanos , SARS-CoV-2 , Titanio , Inactivación de Virus
8.
J Nanobiotechnology ; 18(1): 54, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32209114

RESUMEN

BACKGROUND: Influenza viruses (IVs) have become increasingly resistant to antiviral drugs that target neuraminidase and matrix protein 2 due to gene mutations that alter their drug-binding target protein regions. Consequently, almost all recent IV pandemics have exhibited resistance to commercial antiviral vaccines. To overcome this challenge, an antiviral target is needed that is effective regardless of genetic mutations. MAIN BODY: In particular, hemagglutinin (HA), a highly conserved surface protein across many IV strains, could be an effective antiviral target as it mediates binding of IVs with host cell receptors, which is crucial for membrane fusion. HA has 6 disulfide bonds that can easily bind with the surfaces of gold nanoparticles. Herein, we fabricated porous gold nanoparticles (PoGNPs) via a surfactant-free emulsion method that exhibited strong affinity for disulfide bonds due to gold-thiol interactions, and provided extensive surface area for these interactions. A remarkable decrease in viral infectivity was demonstrated by increased cell viability results after exposing MDCK cells to various IV strains (H1N1, H3N2, and H9N2) treated with PoGNP. Most of all, the viability of MDCK cells infected with all IV strains increased to 96.8% after PoGNP treatment of the viruses compared to 33.9% cell viability with non-treated viruses. Intracellular viral RNA quantification by real-time RT-PCR also confirmed that PoGNP successfully inhibited viral membrane fusion by blocking the viral entry process through conformational deformation of HA. CONCLUSION: We believe that the technique described herein can be further developed for PoGNP-utilized antiviral protection as well as metal nanoparticle-based therapy to treat viral infection. Additionally, facile detection of IAV can be achieved by developing PoGNP as a multiplatform for detection of the virus.


Asunto(s)
Antivirales/farmacología , Oro/farmacología , Virus de la Influenza A/efectos de los fármacos , Nanopartículas del Metal/química , Animales , Perros , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H9N2 del Virus de la Influenza A/genética , Virus de la Influenza A/genética , Células de Riñón Canino Madin Darby , Fusión de Membrana , Porosidad , ARN Viral/análisis , ARN Viral/genética , Internalización del Virus
9.
Emerg Infect Dis ; 25(7): 1433-1435, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31075078

RESUMEN

African swine fever is one of the most dangerous diseases of swine. We confirmed the 2019 outbreak in Vietnam by real-time reverse transcription PCR. The causative strain belonged to p72 genotype II and was 100% identical with viruses isolated in China (2018) and Georgia (2007). International prevention and control collaboration is needed.


Asunto(s)
Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/historia , Fiebre Porcina Africana/virología , Animales , Asfarviridae/clasificación , Asfarviridae/genética , ADN Viral , Brotes de Enfermedades , Genes Virales , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Historia del Siglo XXI , Filogenia , Análisis de Secuencia de ADN , Porcinos
10.
Adv Funct Mater ; 28(34): 1800960, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-32313543

RESUMEN

Highly pathogenic avian influenza virus (HPAIV) infections have occurred continuously and crossed the species barrier to humans, leading to fatalities. A polymerase chain reaction based molecular test is currently the most sensitive diagnostic tool for HPAIV; however, the results must be analyzed in centralized diagnosis systems by a trained individual. This requirement leads to delays in quarantine and isolation. To control the spread of HPAIV, rapid and accurate diagnostics suitable for field testing are needed, and the tests must facilitate a differential diagnosis between HPAIV and low pathogenic avian influenza virus (LPAIV), which undergo cleavage specifically by trypsin- or furin-like proteases, respectively. In this study, a differential avian influenza virus rapid test kit is developed and evaluated in vitro and using clinical specimens from HPAIV H5N1-infected animals. It is demonstrated that this rapid test kit provides highly sensitive and specific detection of HPAIV and LPAIV and is thus a useful field diagnostic tool for H5N1 HPAIV outbreaks and for rapid quarantine control of the disease.

11.
BMC Vet Res ; 14(1): 149, 2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-29716608

RESUMEN

BACKGROUND: Avian-origin H3N2 canine influenza virus (CIV) has been the most common subtype in Korea and China since 2007. Here, we compared the pathogenicity and transmissibility of three H3N2 CIV strains [Chinese CIV (JS/10), Korean CIV (KR/07), and Korean recombinant CIV between the classic H3N2 CIV and the pandemic H1N1 virus (MV/12)] in BALB/c mouse and guinea pig models. The pandemic H1N1 (CA/09) strain served as the control. RESULTS: BALB/c mice infected with H1N1 had high mortality and obvious body weight loss, whereas no overt disease symptoms were observed in mice inoculated with H3N2 CIV strains. The viral titers were higher in the group MV/12 than those in groups JS/10 and KR/07, while the mice infected with JS/10 showed higher viral titers in all tissues (except for the lung) than the mice infected with KR/07. The data obtained in guinea pigs also demonstrated that group MV/12 presented the highest loads in most of the tissues, followed by group JS/10 and KR/07. Also, direct contact transmissions of all the three CIV strains could be observed in guinea pigs, and for the inoculated and the contact groups, the viral titer of group MV/12 and KR/07 was higher than that of group JS/10 in nasal swabs. These findings indicated that the matrix (M) gene obtained from the pandemic H1N1 may enhance viral replication of classic H3N2 CIV; JS/10 has stronger viral replication ability in tissues as compared to KR/07, whereas KR/07 infected guinea pigs have more viral shedding than JS/10 infected guinea pigs. CONCLUSIONS: There exists a discrepancy in pathobiology among CIV isolates. Reverse genetics regarding the genomes of CIV isolates will be helpful to further explain the virus characteristics.


Asunto(s)
Enfermedades de los Perros/virología , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/veterinaria , Animales , China/epidemiología , Modelos Animales de Enfermedad , Perros , Femenino , Cobayas , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/virología , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , República de Corea/epidemiología , Carga Viral , Virulencia
12.
Small ; 13(32)2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28692767

RESUMEN

Reactive oxygen species (ROS) produced during mitochondrial oxidative phosphorylation play an important role as signal messengers in the immune system and also regulate signal transduction. ROS production, initiated as a consequence of microbial invasion, if generated at high levels, induces activation of the MEK (mitogen-activated protein kinase kinase)/ERK (extracellular signal-regulated kinase) pathway to promote cell survival and proliferation. However, viruses hijack the host cells' pathways, causing biphasic activation of the MEK/ERK cascade. Thus, regulation of ROS leads to concomitant inhibition of virus replication. In the present study, poly(aniline-co-pyrrole) polymerized nanoregulators (PASomes) to regulate intracellular ROS levels are synthesized, exploiting their oxidizing-reducing characteristics. Poly(aniline-co-pyrrole) embedded within an amphiphilic methoxy polyethylene glycol-block-polyphenylalanine copolymer (mPEG-b-pPhe) are used. It is demonstrated that the PASomes are water soluble, biocompatible, and could control ROS levels successfully in vitro, inhibiting viral replication and cell death. Furthermore, the effects of homopolymerized nanoregulators (polypyrrole assembled with mPEG-b-pPhe or polyaniline assembled with mPEG-b-pPhe) are compared with those of the PASomes. Consequently, it is confirmed that the PASomes can regulate intracellular ROS levels successfully and suppress viral infection, thereby increasing the cell survival rate.


Asunto(s)
Antivirales/farmacología , Orthomyxoviridae/efectos de los fármacos , Polímeros/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo
13.
Vet Res ; 47(1): 115, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27846859

RESUMEN

Equine influenza virus (EIV) causes a highly contagious disease in horses and other equids. Recently, we isolated an H3N8 EIV (A/equine/Kyonggi/SA1/2011) from a domestic horse in South Korea that exhibited symptoms of respiratory disease, and found that the EIV strain contained a naturally mutated NS gene segment encoding a truncated NS1 protein. In order to determine whether there was an association between the NS gene truncation and viral virulence, a reverse genetics system was applied to generate various NS gene recombinant viruses using the backbone of the H1N1 A/Puerto Rico/8/1934 (PR/8) virus. In a mouse model, the recombinant PR/8 virus containing the mutated NS gene of the Korean H3N8 EIV strain showed a dramatically reduced virulence: it induced no weight loss, no clinical signs and no histopathological lesions. However, the mice infected with the recombinant viruses with NS genes of PR/8 and H3N8 A/equine/2/Miami/1963 showed severe clinical signs including significant weight loss and 100% mortality. In addition, the levels of the pro-inflammatory cytokines; IL-6, CCL5, and IFN-γ, in the lungs of mice infected with the recombinant viruses expressing a full-length NS1 were significantly higher than those of mice infected with the virus with the NS gene from the Korean H3N8 EIV strain. In this study, our results suggest that the C-terminal moiety of NS1 contains a number of virulence determinants and might be a suitable target for the development of a vaccine candidate against equine influenza.


Asunto(s)
Subtipo H3N8 del Virus de la Influenza A , Infecciones por Orthomyxoviridae/veterinaria , Proteínas no Estructurales Virales/genética , Células A549 , Animales , Western Blotting , Citocinas/metabolismo , Perros , Células HEK293 , Enfermedades de los Caballos/inmunología , Enfermedades de los Caballos/virología , Caballos , Humanos , Subtipo H3N8 del Virus de la Influenza A/genética , Subtipo H3N8 del Virus de la Influenza A/patogenicidad , Pulmón/patología , Pulmón/virología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Recombinación Genética/genética , Proteínas no Estructurales Virales/inmunología , Ensayo de Placa Viral
14.
Arch Virol ; 161(7): 1915-23, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27138550

RESUMEN

An outbreak of a canine influenza virus (CIV) H3N2 reassortant derived from pandemic (pdm) H1N1 and CIV H3N2 in companion animals has underscored the urgent need to monitor CIV infections for potential zoonotic transmission of influenza viruses to humans. In this study, we assessed the virulence of a novel CIV H3N2 reassortant, VC378, which was obtained from a dog that was coinfected with pdm H1N1 and CIV H3N2, in ferrets, dogs, and mice. Significantly enhanced virulence of VC378 was demonstrated in mice, although the transmissibility and pathogenicity of VC378 were similar to those of classical H3N2 in ferrets and dogs. This is notable because mice inoculated with an equivalent dose of classical CIV H3N2 showed no clinical signs and no lethality. We found that the PA and NS gene segments of VC378 were introduced from pdmH1N1, and these genes included the amino acid substitutions PA-P224S and NS-I123V, which were previously found to be associated with increased virulence in mice. Thus, we speculate that the natural reassortment between pdm H1N1 and CIV H3N2 can confer virulence and that continuous surveillance is needed to monitor the evolution of CIV in companion animals.


Asunto(s)
Modelos Animales de Enfermedad , Perros , Hurones , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Gripe Humana/virología , Ratones , Virus Reordenados/patogenicidad , Animales , Perros/virología , Hurones/virología , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/fisiología , Gripe Humana/mortalidad , Ratones/virología , Ratones Endogámicos C57BL , Virus Reordenados/genética , Virus Reordenados/fisiología , Proteínas Virales/genética
15.
BMC Vet Res ; 12(1): 256, 2016 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-27855667

RESUMEN

BACKGROUND: Porcine respiratory and reproductive syndrome (PRRS) virus is one of the most economically significant pathogens in the Vietnamese swine industry. ORF5, which participates in many functional processes, including virion assembly, entry of the virus into the host cell, and viral adaptation to the host immune response, has been widely used in molecular evolution and phylogeny studies. Knowing of molecular evolution of PRRSV fields strains might contribute to PRRS control in Vietnam. RESULTS: The results showed that phylogenetic analysis indicated that all strains belonged to sub-lineages 8.7 and 5.1. The nucleotide and amino acid identities between strains were 84.5-100% and 82-100%, respectively. Furthermore, the results revealed differences in nucleotide and amino acid identities between the 2 sub-lineage groups. N-glycosylation prediction identified 7 potential N-glycosylation sites and 11 glycotypes. Analyses of the GP5 sequences, revealed 7 sites under positive selective pressure and 25 under negative selective pressure. CONCLUSIONS: Phylogenetic analysis based on ORF5 sequence indicated the diversity of PRRSV in Vietnam. Furthermore, the variance of N-glycosylation sites and position under selective pressure were demonstrated. This study expands existing knowledge on the genetic diversity and evolution of PRRSV in Vietnam and assists the effective strategies for PRRS vaccine development in Vietnam.


Asunto(s)
Evolución Molecular , Filogenia , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Proteínas del Envoltorio Viral/genética , Animales , Variación Genética , Glicosilación , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/clasificación , Selección Genética , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Porcinos , Vietnam , Proteínas del Envoltorio Viral/química
16.
J Gen Virol ; 96(Pt 2): 254-258, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25312584

RESUMEN

We investigated the infectivity and transmissibility of the human seasonal H3N2, pandemic (pdm) H1N1 (2009) and B influenza viruses in dogs. Dogs inoculated with human seasonal H3N2 and pdm H1N1 influenza viruses exhibited nasal shedding and were seroconverted against the viruses; this did not occur in the influenza B virus-inoculated dogs. Transmission of human H3N2 virus between dogs was demonstrated by observing nasal shedding and seroconversion in naïve dogs after contact with inoculated dogs. The seroprevalence study offered evidence of human H3N2 infection occurring in dogs since 2008. Furthermore, serological evidence of pdm H1N1 influenza virus infection alone and in combination with canine H3N2 virus was found in the serum samples collected from field dogs during 2010 and 2011. Our results suggest that dogs may be hosts for human seasonal H3N2 and pdm H1N1 influenza viruses.


Asunto(s)
Enfermedades de los Perros/transmisión , Enfermedades de los Perros/virología , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza B/aislamiento & purificación , Gripe Humana/virología , Infecciones por Orthomyxoviridae/veterinaria , Animales , Anticuerpos Antivirales/sangre , Reservorios de Enfermedades , Enfermedades de los Perros/patología , Perros , Humanos , Subtipo H3N2 del Virus de la Influenza A/crecimiento & desarrollo , Virus de la Influenza B/crecimiento & desarrollo , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Esparcimiento de Virus
17.
Virol J ; 12: 134, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26336880

RESUMEN

BACKGROUND: Since avian-origin H3N2 canine influenza virus (CIV) was first identified in South Korea in 2008, the novel influenza virus has been reported in several countries in Asia. Reverse zoonotic transmission of pandemic H1N1 (2009) influenza virus (pH1N1) has been observed in a broad range of animal species. Viral dominance and characterization of the reassortants of both viruses was undertaken in the present study. FINDINGS: Here we describe the viral dominance of 23 CIV reassortants between pH1N1 and canine H3N2 influenza viruses from a naturally co-infected dog. These results indicate that the M gene of pandemic H1N1 and the HA gene of canine H3N2 are predominant in the reassortants. Furthermore, unlike the original canine H3N2 virus, some reassortants showed high pathogenicity in mice. CONCLUSIONS: This study suggests that continuous monitoring of influenza infection in companion animals may be necessary to investigate the potential of the emergence of novel influenza viruses.


Asunto(s)
Coinfección/veterinaria , Enfermedades de los Perros/virología , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Infecciones por Orthomyxoviridae/veterinaria , Virus Reordenados/aislamiento & purificación , Animales , Coinfección/virología , Modelos Animales de Enfermedad , Perros , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/virología , Virus Reordenados/genética , República de Corea , Proteínas de la Matriz Viral/genética , Virulencia
18.
BMC Vet Res ; 11: 272, 2015 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-26497589

RESUMEN

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) causes a loss of approximately US$ 70 million every year to the South Korean pork industry. There are two distinct genotypes: European (type 1) and North American (type 2). In South Korea, type 1 and type 2 PRRSV are widely distributed and have evolved continuously since the infection was first described. Here, we present two field cases of type 1 PRRSV infection with unusually severe pathogenicity. CASE PRESENTATION: The first case farm was a two-site production system comprising farrow-to-grower and grower-to-finish units and was historically free from PRRSV infections. The PRRSV vaccine had not been used in both units. In October 2014, pigs in the grower-to-finish unit experienced severe respiratory distress with the mortality rate reaching to 22%. Despite antibiotic treatment, clinical signs were still noticed in most pigs. The second case farm was also a two-site production system, but had two separate farrow-to-grower units (unit A and unit B). Historically, type 1 PRRSV was continuously present in unit A, but unit B was free from PRRSV. Thus, all grower pigs of unit B were vaccinated before being moved to the grower-to-finish unit. In November 2014, severe respiratory distress was seen in pigs of the grower-to-finish unit. Significant respiratory distress was observed in only the grower herd moved from unit B, and the mortality of those pigs was ~50%. However, no disease was shown in the grower pigs from unit A. CONCLUSIONS: To our knowledge, the present study is the first observation of the cases of infection by highly pathogenic type 1 PRRSV in South Korea. The Korean type 1 PRRSV strains have undergone unique evolutionary dynamics for the last decade in this country. Although there are known to be three clusters of Korean type 1 PRRSV, their pathogenicity could not be categorized owing to their high level of genetic diversity. Therefore, further studies are needed to demonstrate the novel classification of Korean type 1 PRRSV strains according to their virulence factors.


Asunto(s)
Crianza de Animales Domésticos/métodos , Síndrome Respiratorio y de la Reproducción Porcina/patología , Animales , Genotipo , Pulmón/patología , Filogenia , Síndrome Respiratorio y de la Reproducción Porcina/epidemiología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , República de Corea/epidemiología , Porcinos , Virulencia
19.
Ecohealth ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842623

RESUMEN

In this comprehensive large-scale study, conducted from 2015 to 2019, 7,209 wild boars across South Korea were sampled to assess their exposure to influenza A viruses (IAVs). Of these, 250 (3.5%) were found to be IAV-positive by ELISA, and 150 (2.1%) by the hemagglutination inhibition test. Detected subtypes included 23 cases of pandemic 2009 H1N1, six of human seasonal H3N2, three of classical swine H1N1, 13 of triple-reassortant swine H1N2, seven of triple-reassortant swine H3N2, and seven of swine-origin H3N2 variant. Notably, none of the serum samples tested positive for avian IAV subtypes H3N8, H5N3, H7N7, and H9N2 or canine IAV subtype H3N2. This serologic analysis confirmed the exposure of Korean wild boars to various subtypes of swine and human influenza viruses, with some serum samples cross-reacting between swine and human strains, indicating potential infections with multiple IAVs. The results highlight the potential of wild boar as a novel mixing vessel, facilitating the adaptation of IAVs and their spillover to other hosts, including humans. In light of these findings, we recommend regular and frequent surveillance of circulating influenza viruses in the wild boar population as a proactive measure to prevent potential human influenza pandemics and wild boar influenza epizootics.

20.
Microbiol Spectr ; 12(3): e0176223, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38289932

RESUMEN

Mammalian orthoreoviruses (MRVs) infect a wide range of hosts, including humans, livestock, and wildlife. In the present study, we isolated a novel Mammalian orthoreovirus from the intestine of a microbat (Myotis aurascens) and investigated its biological and pathological characteristics. Phylogenetic analysis indicated that the new isolate was serotype 2, sharing the segments with those from different hosts. Our results showed that it can infect a wide range of cell lines from different mammalian species, including human, swine, and non-human primate cell lines. Additionally, media containing trypsin, yeast extract, and tryptose phosphate broth promoted virus propagation in primate cell lines and most human cell lines, but not in A549 and porcine cell lines. Mice infected with this strain via the intranasal route, but not via the oral route, exhibited weight loss and respiratory distress. The virus is distributed in a broad range of organs and causes lung damage. In vitro and in vivo experiments also suggested that the new virus could be a neurotropic infectious strain that can infect a neuroblastoma cell line and replicate in the brains of infected mice. Additionally, it caused a delayed immune response, as indicated by the high expression levels of cytokines and chemokines only at 14 days post-infection (dpi). These data provide an important understanding of the genetics and pathogenicity of mammalian orthoreoviruses in bats at risk of spillover infections.IMPORTANCEMammalian orthoreoviruses (MRVs) have a broad range of hosts and can cause serious respiratory and gastroenteritis diseases in humans and livestock. Some strains infect the central nervous system, causing severe encephalitis. In this study, we identified BatMRV2/SNU1/Korea/2021, a reassortment of MRV serotype 2, isolated from bats with broad tissue tropism, including the neurological system. In addition, it has been shown to cause respiratory syndrome in mouse models. The given data will provide more evidence of the risk of mammalian orthoreovirus transmission from wildlife to various animal species and the sources of spillover infections.


Asunto(s)
Quirópteros , Orthoreovirus de los Mamíferos , Ratones , Animales , Porcinos , Orthoreovirus de los Mamíferos/genética , Filogenia , Virulencia , Animales Salvajes , República de Corea , Primates
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA