Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(23): e2222096120, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252989

RESUMEN

Rational design and synthesis of high-performance electrocatalysts for ethanol oxidation reaction (EOR) is crucial to large-scale commercialization of direct ethanol fuel cells, but it is still an incredible challenge. Herein, a unique Pd metallene/Ti3C2Tx MXene (Pdene/Ti3C2Tx)-supported electrocatalyst is constructed via an in-situ growth approach for high-efficiency EOR. The resulting Pdene/Ti3C2Tx catalyst achieves an ultrahigh mass activity of 7.47 A mgPd-1 under alkaline condition, as well as high tolerance to CO poisoning. In situ attenuated total reflection-infrared spectroscopy studies combined with density functional theory calculations reveal that the excellent EOR activity of Pdene/Ti3C2Tx catalyst is attributed to the unique and stable interfaces which reduce the reaction energy barrier of *CH3CO intermediate oxidation and facilitate oxidative removal of CO poisonous species by increasing the Pd-OH binding strength.

2.
Proc Natl Acad Sci U S A ; 119(29): e2204369119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858362

RESUMEN

The biological carbon pump (BCP) stores ∼1,700 Pg C from the atmosphere in the ocean interior, but the magnitude and direction of future changes in carbon sequestration by the BCP are uncertain. We quantify global trends in export production, sinking organic carbon fluxes, and sequestered carbon in the latest Coupled Model Intercomparison Project Phase 6 (CMIP6) future projections, finding a consistent 19 to 48 Pg C increase in carbon sequestration over the 21st century for the SSP3-7.0 scenario, equivalent to 5 to 17% of the total increase of carbon in the ocean by 2100. This is in contrast to a global decrease in export production of -0.15 to -1.44 Pg C y-1. However, there is significant uncertainty in the modeled future fluxes of organic carbon to the deep ocean associated with a range of different processes resolved across models. We demonstrate that organic carbon fluxes at 1,000 m are a good predictor of long-term carbon sequestration and suggest this is an important metric of the BCP that should be prioritized in future model studies.


Asunto(s)
Secuestro de Carbono , Carbono , Ecosistema , Atmósfera/química , Carbono/análisis , Modelos Teóricos , Océanos y Mares , Incertidumbre
3.
J Am Chem Soc ; 146(30): 20700-20708, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39019580

RESUMEN

Electrocatalysis is generally confined to dynamic liquid-solid and gas-solid interfaces and is rarely applicable in solid-state reactions. Here, we report a paradigm shift strategy to exploit electrocatalysis to accelerate solid-state reactions in the context of lithium-ion batteries (LIBs). We employ heteroatom doping, specifically boron for silicon and sulfur for phosphorus, to catalyze electrochemical Li-alloying reactions in solid-state electrode materials. The preferential cleavage of polar dopant-host chemical bonds upon lithiation triggers chemical bond breaking of the host material. This solid-state catalysis, distinct from liquid and gas phases, requires a critical doping concentration for optimal performance. Beyond a critical concentration of ∼1 atom %, boron and sulfur doping drastically reduces activation energies and accelerates redox kinetics during lithiation/delithiation processes, leading to markedly enhanced rate performance in boron-doped silicon and sulfur-doped black/red phosphorus anode. Notably, a sulfur-doped black phosphorus anode coupled with a lithium cobalt oxide cathode achieves an ultrafast-charging battery, recharging 80% energy of a battery in 302 Wh kg-1 in 9 min, surpassing the thus far reported LIBs.

4.
J Am Chem Soc ; 146(1): 468-475, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38150583

RESUMEN

The in-tandem catalyst holds great promise for addressing the limitation of low *CO coverage on Cu-based materials for selective C2H4 generation during CO2 electroreduction. However, the potential mismatch between the CO-formation catalyst and the favorable C-C coupling Cu catalyst represents a bottleneck in these types of electrocatalysts, resulting in low tandem efficiencies. In this study, we propose a robust solution to this problem by introducing a wide-CO generation-potential window nickel single atom catalyst (Ni SAC) supported on a Cu catalyst. The selection of Ni SAC was based on theoretical calculations, and its excellent performance was further confirmed by using in situ IR spectroscopy. The facilitated carbon dimerization in our tandem catalyst led to a ∼370 mA/cm2 partial current density of C2H4, corresponding to a faradic efficiency of ∼62%. This performance remained stable and consistent for at least ∼14 h at a high current density of 500 mA/cm2 in a flow-cell reactor, outperforming most tandem catalysts reported so far.

5.
Apoptosis ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110356

RESUMEN

High-altitude pulmonary edema (HAPE) is a fatal threat for sojourners who ascend rapidly without sufficient acclimatization. Acclimatized sojourners and adapted natives are both insensitive to HAPE but have different physiological traits and molecular bases. In this study, based on GSE52209, the gene expression profiles of HAPE patients were compared with those of acclimatized sojourners and adapted natives, with the common and divergent differentially expressed genes (DEGs) and their hub genes identified, respectively. Bioinformatic methodologies for functional enrichment analysis, immune infiltration, diagnostic model construction, competing endogenous RNA (ceRNA) analysis and drug prediction were performed to detect potential biological functions and molecular mechanisms. Next, an array of in vivo experiments in a HAPE rat model and in vitro experiments in HUVECs were conducted to verify the results of the bioinformatic analysis. The enriched pathways of DEGs and immune landscapes for HAPE were significantly different between sojourners and natives, and the common DEGs were enriched mainly in the pathways of development and immunity. Nomograms revealed that the upregulation of TNF-α and downregulation of RPLP0 exhibited high diagnostic efficiency for HAPE in both sojourners and natives, which was further validated in the HAPE rat model. The addition of TNF-α and RPLP0 knockdown activated apoptosis signaling in endothelial cells (ECs) and enhanced endothelial permeability. In conclusion, TNF-α and RPLP0 are shared biomarkers and molecular bases for HAPE susceptibility during the acclimatization/adaptation/maladaptation processes in sojourners and natives, inspiring new ideas for predicting and treating HAPE.

6.
Small ; 20(26): e2311178, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38224219

RESUMEN

Alkaline anion-exchange-membrane water electrolyzers (AEMWEs) using earth-abundant catalysts is a promising approach for the generation of green H2. However, the AEMWEs with alkaline electrolytes suffer from poor performance at high current density compared to proton exchange membrane electrolyzers. Here, atomically dispersed Pt-Ru dual sites co-embedded in nanoporous nickel selenides (np/Pt1Ru1-Ni0.85Se) are developed by a rapid melt-quenching approach to achieve highly-efficient alkaline hydrogen evolution reaction. The np/Pt1Ru1-Ni0.85Se catalyst shows ampere-level current density with a low overpotential (46 mV at 10 mA cm-2 and 225 mV at 1000 mA cm-2), low Tafel slope (32.4 mV dec-1), and excellent long-term durability, significantly outperforming the benchmark Pt/C catalyst and other advanced large-current catalysts. The remarkable HER performance of nanoporous Pt1Ru1-Ni0.85Se is attributed to the strong intracrystal electronic metal-support interaction (IEMSI) between Pt-Se-Ru sites and Ni0.85Se support which can greatly enlarge the charge redistribution density, reduce the energy barrier of water dissociation, and optimize the potential determining step. Furthermore, the assembled alkaline AEMWE with an ultralow Pt and Ru loading realizes an industrial-level current density of 1 A cm-2 at 1.84 volts with high durability.

7.
Small ; 20(2): e2305479, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37658510

RESUMEN

Although proton exchange membrane water electrolyzers (PEMWE) are considered as a promising technique for green hydrogen production, it remains crucial to develop intrinsically effective oxygen evolution reaction (OER) electrocatalysts with high activity and durability. Here, a flexible self-supporting electrode with nanoporous Ir/Ta2O5 electroactive surface is reported for acidic OER via dealloying IrTaCoB metallic glass ribbons. The catalyst exhibits excellent electrocatalytic OER performance with an overpotential of 218 mV for a current density of 10 mA cm-2 and a small Tafel slope of 46.1 mV dec-1 in acidic media, superior to most electrocatalysts. More impressively, the assembled PEMWE with nanoporous Ir/Ta2 O5 as an anode shows exceptional performance of electrocatalytic hydrogen production and can operate steadily for 260 h at 100 mA cm-2 . In situ spectroscopy characterizations and density functional theory calculations reveal that the modest adsorption of OOH* intermediates to active Ir sites lower the OER energy barrier, while the electron donation behavior of Ta2 O5 to stabilize the high-valence states of Ir during the OER process extended catalyst's durability.

8.
Angew Chem Int Ed Engl ; : e202407661, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38924201

RESUMEN

Electrocatalytic reduction of CO2 powered by renewable electricity provides an elegant route for converting CO2 into valuable chemicals and feedstocks, but normally suffers from a high overpotential and low selectivity. Herein, Ag and Sn heteroatoms were simultaneously introduced into nanoporous Cu (np-Ag/Sn-Cu) mainly in the form of an asymmetric local electric field for CO2 electroreduction to CO in an aqueous solution. The designed np-Ag/Sn-Cu catalyst realizes a recorded 90 % energy efficiency and a 100 % CO Faradaic efficiency over ultrawide potential window (ΔE=1.4 V), outperforming state-of-the-art Au and Ag-based catalysts. Density functional theory calculations combined with in situ spectroscopy studies reveal that Ag and Sn heteroatoms incorporated into Cu matrix could generate strong and asymmetric local electric field, which promotes the activation of CO2 molecules, enhances the stabilization of the *COOH intermediate, and suppresses the hydrogen evolution reaction, thus favoring the production of CO during CO2RR.

9.
Angew Chem Int Ed Engl ; 63(28): e202405438, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38682249

RESUMEN

The alkaline oxygen evolution reaction (OER) is a promising avenue for producing clean fuels and storing intermittent energy. However, challenges such as excessive OH- consumption and strong adsorption of oxygen-containing intermediates hinder the development of alkaline OER. In this study, we propose a cooperative strategy by leveraging both nano-scale and atomically local electric fields for alkaline OER, demonstrated through the synthesis of Mn single atom doped CoP nanoneedles (Mn SA-CoP NNs). Finite element method simulations and density functional theory calculations predict that the nano-scale local electric field enriches OH- around the catalyst surface, while the atomically local electric field improves *O desorption. Experimental validation using in situ attenuated total reflection infrared and Raman spectroscopy confirms the effectiveness of the nano-scale and atomically electric fields. Mn SA-CoP NNs exhibit an ultra-low overpotential of 189 mV at 10 mA cm-2 and stable operation over 100 hours at ~100 mA cm-2 during alkaline OER. This innovative strategy provides new insights for enhancing catalyst performance in energy conversion reactions.

10.
J Am Chem Soc ; 145(32): 17892-17901, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37482661

RESUMEN

Exploring an efficient and robust electrocatalyst for hydrogen evolution reaction (HER) at high pH and temperature holds the key to the industrial application of alkaline water electrolysis (AWE). Herein, we design an open tunnel structure by dealloying a series of Laves phase intermetallics, i.e., MCo2 and MRu0.25Co1.75 (M = Sc and Zr). The dealloying process can induce a zeolite-like metal framework for ScCo2 and ScRu0.25Co1.75 by stripping Sc metal from the center of a tunnel structure. This structural engineering significantly lowers their overpotentials at a current density of 500 mA/cm2 (η500) ca. 80 mV in 1.0 M KOH. Through a simple process, ScRu0.25Co1.75 can be easily decorated on a carbon cloth substrate and only requires 132 mV to reach 500 mA/cm2. More importantly it can maintain activity over 1000 h in industrial conditions (6.0 M KOH at 333 K), showing its potential for practical industrial applications.

11.
J Am Chem Soc ; 145(37): 20683-20691, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37683296

RESUMEN

Metastable state is the most active catalyst state that dictates the overall catalytic performance and rules of catalytic behaviors; however, identification and stabilization of the metastable state of catalyst are still highly challenging due to the continuous evolution of catalytic sites during the reaction process. In this work, operando 119Sn Mössbauer measurements and theoretical simulations were performed to track and identify the metastable state of single-atom Sn in copper oxide (Sn1-CuO) for highly selective CO2 electroreduction to CO. A maximum CO Faradaic efficiency of around 98% at -0.8 V (vs. RHE) over Sn1-CuO was achieved at an optimized Sn loading of 5.25 wt. %. Operando Mössbauer spectroscopy clearly identified the dynamic evolution of atomically dispersed Sn4+ sites in the CuO matrix that enabled the in situ transformation of Sn4+-O4-Cu2+ to a metastable state Sn4+-O3-Cu+ under CO2RR conditions. In combination with quasi in situ X-ray photoelectron spectroscopy, operando Raman and attenuated total reflectance surface enhanced infrared absorption spectroscopies, the promoted desorption of *CO over the Sn4+-O3 stabilized adjacent Cu+ site was evidenced. In addition, density functional theory calculations further verified that the in situ construction of Sn4+-O3-Cu+ as the true catalytic site altered the reaction path via modifying the adsorption configuration of the *COOH intermediate, which effectively reduced the reaction free energy required for the hydrogenation of CO2 and the desorption of the *CO, thereby greatly facilitating the CO2-to-CO conversion. This work provides a fundamental insight into the role of single Sn atoms on in situ tuning the electronic structure of Cu-based catalysts, which may pave the way for the development of efficient catalysts for high-selectivity CO2 electroreduction.

12.
J Am Chem Soc ; 145(28): 15600-15610, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37418344

RESUMEN

Single-atom catalysts with a well-defined metal center open unique opportunities for exploring the catalytically active site and reaction mechanism of chemical reactions. However, understanding of the electronic and structural dynamics of single-atom catalytic centers under reaction conditions is still limited due to the challenge of combining operando techniques that are sensitive to such sites and model single-atom systems. Herein, supported by state-of-the-art operando techniques, we provide an in-depth study of the dynamic structural and electronic evolution during the electrochemical CO2 reduction reaction (CO2RR) of a model catalyst comprising iron only as a high-spin (HS) Fe(III)N4 center in its resting state. Operando 57Fe Mössbauer and X-ray absorption spectroscopies clearly evidence the change from a HS Fe(III)N4 to a HS Fe(II)N4 center with decreasing potential, CO2- or Ar-saturation of the electrolyte, leading to different adsorbates and stability of the HS Fe(II)N4 center. With operando Raman spectroscopy and cyclic voltammetry, we identify that the phthalocyanine (Pc) ligand coordinating the iron cation center undergoes a redox process from Fe(II)Pc to Fe(II)Pc-. Altogether, the HS Fe(II)Pc- species is identified as the catalytic intermediate for CO2RR. Furthermore, theoretical calculations reveal that the electroreduction of the Pc ligand modifies the d-band center of the in situ generated HS Fe(II)Pc- species, resulting in an optimal binding strength to CO2 and thus boosting the catalytic performance of CO2RR. This work provides both experimental and theoretical evidence toward the electronic structural and dynamics of reactive sites in single-Fe-atom materials and shall guide the design of novel efficient catalysts for CO2RR.

13.
Inflamm Res ; 72(9): 1919-1932, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37725105

RESUMEN

OBJECTIVE: Nafamostat mesilate (NM), a synthetic broad-spectrum serine protease inhibitor, has been commonly used for treating acute pancreatitis (AP) and other inflammatory-associated diseases in some East Asia countries. Although the potent inhibitory activity against inflammation-related proteases (such as thrombin, trypsin, kallikrein, plasmin, coagulation factors, and complement factors) is generally believed to be responsible for the anti-inflammatory effects of NM, the precise target and molecular mechanism underlying its anti-inflammatory activity in AP treatment remain largely unknown. METHODS: The protection of NM against pancreatic injury and inhibitory effect on the NOD-like receptor protein 3 (NLRP3) inflammasome activation were investigated in an experimental mouse model of AP. To decipher the molecular mechanism of NM, the effects of NM on nuclear factor kappa B (NF-κB) activity and NF-κB mediated NLRP3 inflammasome priming were examined in lipopolysaccharide (LPS)-primed THP-1 cells. Additionally, the potential of NM to block the activity of histone deacetylase 6 (HDAC6) and disrupt the association between HDAC6 and NLRP3 was also evaluated. RESULTS: NM significantly suppressed NLRP3 inflammasome activation in the pancreas, leading to a reduction in pancreatic inflammation and prevention of pancreatic injury during AP. NM was found to interact with HDAC6 and effectively inhibit its function. This property allowed NM to influence HDAC6-dependent NF-κB transcriptional activity, thereby blocking NF-κB-driven transcriptional priming of the NLRP3 inflammasome. Furthermore, NM exhibited the potential to interfere the association between HDAC6 and NLRP3, impeding HDAC6-mediated intracellular transport of NLRP3 and ultimately preventing NLRP3 inflammasome activation. CONCLUSIONS: Our current work has provided valuable insight into the molecular mechanism underlying the immunomodulatory effect of NM in the treatment of AP, highlighting its promising application in the prevention of NLRP3 inflammasome-associated inflammatory pathological damage.


Asunto(s)
Inflamasomas , Pancreatitis , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Pancreatitis/prevención & control , FN-kappa B/metabolismo , Ceruletida/efectos adversos , Proteínas NLR , Histona Desacetilasa 6/uso terapéutico , Enfermedad Aguda , Inflamación/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
14.
Environ Sci Technol ; 57(51): 21744-21756, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38085882

RESUMEN

Mineral weathering and alkaline pH neutralization are prerequisites to the ecoengineering of alkaline Fe-ore tailings into soil-like growth media (i.e., Technosols). These processes can be accelerated by the growth and physiological functions of tolerant sulfur oxidizing bacteria (SOB) in tailings. The present study characterized an indigenous SOB community enriched in the tailings, in response to the addition of elemental sulfur (S0) and organic matter (OM), as well as resultant S0oxidation, pH neutralization, and mineral weathering in a glasshouse experiment. The addition of S0 was found to have stimulated the growth of indigenous SOB, such as acidophilic Alicyclobacillaceae, Bacillaceae, and Hydrogenophilaceae in tailings. The OM amendment favored the growth of heterotrophic/mixotrophic SOB (e.g., class Alphaproteobacteria and Gammaproteobacteria). The resultant S0 oxidation neutralized the alkaline pH and enhanced the weathering of biotite-like minerals and formation of secondary minerals, such as ferrihydrite- and jarosite-like minerals. The improved physicochemical properties and secondary mineral formation facilitated organo-mineral associations that are critical to soil aggregate formation. From these findings, co-amendments of S0 and plant biomass (OM) can be applied to enhance the abundance of the indigenous SOB community in tailings and accelerate mineral weathering and geochemical changes for eco-engineered soil formation, as a sustainable option for rehabilitation of Fe ore tailings.


Asunto(s)
Compuestos de Hierro , Minerales , Bacterias , Azufre , Oxidación-Reducción , Hierro , Suelo , Concentración de Iones de Hidrógeno
15.
J Am Chem Soc ; 144(32): 14505-14516, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35920726

RESUMEN

Electrosynthesis of hydrogen peroxide (H2O2) through oxygen reduction reaction (ORR) is an environment-friendly and sustainable route for obtaining a fundamental product in the chemical industry. Co-N4 single-atom catalysts (SAC) have sparkled attention for being highly active in both 2e- ORR, leading to H2O2 and 4e- ORR, in which H2O is the main product. However, there is still a lack of fundamental insights into the structure-function relationship between CoN4 and the ORR mechanism over this family of catalysts. Here, by combining theoretical simulation and experiments, we unveil that pyrrole-type CoN4 (Co-N SACDp) is mainly responsible for the 2e- ORR, while pyridine-type CoN4 catalyzes the 4e- ORR. Indeed, Co-N SACDp exhibits a remarkable H2O2 selectivity of 94% and a superb H2O2 yield of 2032 mg for 90 h in a flow cell, outperforming most reported catalysts in acid media. Theoretical analysis and experimental investigations confirm that Co-N SACDp─with weakening O2/HOO* interaction─boosts the H2O2 production.


Asunto(s)
Peróxido de Hidrógeno , Oxígeno , Catálisis
16.
Small ; 18(4): e2104043, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34846781

RESUMEN

The electrocatalytic nitrogen reduction reaction (NRR) provides a promising strategy to convert the abundant but inert N2 into NH3 using renewable energy. Herein, single-atom Au isolated onto bicontinous nanoporous MoSe2 (np-MoSe2 ) is designed as an electrocatalyst for achieving highly efficient NRR catalysis, which exhibits a high Faradaic efficiency (FE) of 37.82% and an NH3 production rate of 30.83 µg h-1 mg-1 at -0.3 V versus a reversible hydrogen electrode (RHE) in 0.1 m Na2 SO4 under ambient conditions. Experimental and theoretical investigations reveal that the introduction of single Au atoms onto np-MoSe2 optimizes the adsorption of NRR intermediates while suppressing the competing HER, thus providing an energetic-favorable process for enhancing the catalytic selectivity toward electrochemical N2 reduction into NH3 .


Asunto(s)
Nanoporos , Nitrógeno , Catálisis , Oro
17.
Nano Lett ; 21(16): 6907-6913, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34369776

RESUMEN

Electrochemical CO2 reduction provides a promising strategy to product value-added fuels and chemical feedstocks. However, it remains a grand challenge to further reduce the overpotentials and increase current density for large-scale applications. Here, spontaneously Sn doped Bi/BiOx nanowires (denoted as Bi/Bi(Sn)Ox NWs) with a core-shell structure were synthesized by an electrochemical dealloying strategy. The Bi/Bi(Sn)Ox NWs exhibit impressive formate selectivity over 92% from -0.5 to -0.9 V versus reversible hydrogen electrode (RHE) and achieve a current density of 301.4 mA cm-2 at -1.0 V vs RHE. In-situ Raman spectroscopy and theoretical calculations reveal that the introduction of Sn atoms into BiOx species can promote the stabilization of the *OCHO intermediate on the Bi(Sn)Ox surface and suppress the competitive H2/CO production. This work provides effective in situ construction of the metal/metal oxide hybrid composites with heteroatom doping and new insights in promoting electrochemical CO2 conversion into formate for practical applications.

18.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3495-3500, 2022 Jul.
Artículo en Zh | MEDLINE | ID: mdl-35850801

RESUMEN

The present study explored the differences in active ingredients and in vitro anti-inflammatory effects of the decoction pieces by integrated processing(IPDP) and traditional processing(TPDP) of Polygoni Cuspidati Rhizoma et Radix(PCRER).The content of polydatin, resveratrol, emodin-8-O-ß-D-glucoside, emodin, and physcion in IPDP and TPDP was determined by high-performance liquid chromatography(HPLC).The inflammation model was induced by lipopolysaccharide(LPS) in RAW264.7 cells.The mRNA levels of inflammatory cytokines tumor necrosis factor-α(TNF-α), interleukin-6(IL-6), and interleukin-1ß(IL-1ß) in 60% ethanol extracts of IPDP and TPDP of different concentrations(5 and 10 µg·mL~(-1)) were determined by PCR.The results showed that the content of polydatin and emodin-8-O-ß-D-glucoside in IPDP was significantly higher than that in TPDP, while the content of resveratrol, emodin, and physcion was higher in TPDP.The anti-inflammatory results showed that ethanol extracts of IPDP of different concentrations(5 and 10 µg·mL~(-1)) significantly inhibited the increase in the mRNA levels of IL-1ß and TNF-α induced by LPS, whereas TPDP only had a significant inhibitory effect on IL-1ß.This study preliminarily showed that the total content of five active ingredients in IPDP was higher than that in TPDP, and IPDP was superior to TPDP in anti-inflammatory activity in vitro, which provided an experimental basis for the production and application of IPDP.


Asunto(s)
Medicamentos Herbarios Chinos , Emodina , Antiinflamatorios/farmacología , Medicamentos Herbarios Chinos/farmacología , Emodina/farmacología , Etanol , Lipopolisacáridos , ARN Mensajero/genética , Resveratrol/farmacología , Factor de Necrosis Tumoral alfa/genética
19.
Angew Chem Int Ed Engl ; 61(4): e202113664, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34822728

RESUMEN

Ruthenium (Ru)-based catalysts, with considerable performance and desirable cost, are becoming highly interesting candidates to replace platinum (Pt) in the alkaline hydrogen evolution reaction (HER). The hydrogen binding at Ru sites (Ru-H) is an important factor limiting the HER activity. Herein, density functional theory (DFT) simulations show that the essence of Ru-H binding energy is the strong interaction between the 4 d z 2 orbital of Ru and the 1s orbital of H. The charge transfer between Ru sites and substrates (Co and Ni) causes the appropriate downward shift of the 4 d z 2 -band center of Ru, which results in a Gibbs free energy of 0.022 eV for H* in the RuCo system, much lower than the 0.133 eV in the pure Ru system. This theoretical prediction has been experimentally confirmed using RuCo alloy-nanosheets (RuCo ANSs). They were prepared via a fast co-precipitation method followed with a mild electrochemical reduction. Structure characterizations reveal that the Ru atoms are embedded into the Co substrate as isolated active sites with a planar symmetric and Z-direction asymmetric coordination structure, obtaining an optimal 4 d z 2 modulated electronic structure. Hydrogen sensor and temperature program desorption (TPD) tests demonstrate the enhanced Ru-H interactions in RuCo ANSs compared to those in pure Ru nanoparticles. As a result, the RuCo ANSs reach an ultra-low overpotential of 10 mV at 10 mA cm-2 and a Tafel slope of 20.6 mV dec-1 in 1 M KOH, outperforming that of the commercial Pt/C. This holistic work provides a new insight to promote alkaline HER by optimizing the metal-H binding energy of active sites.

20.
Inorg Chem ; 60(17): 13607-13614, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34435489

RESUMEN

Geometry effect and electronic effect are both essential for the rational design of a highly efficient electrocatalyst. In order to untangle the relationship between these effects and electrocatalytic activity, the perryite phase with a versatile chemical composition, (NixFe1-x)8(TyP1-y)3 (T = Si and Ge; 1 ≥ x, y ≥ 0), was selected as a platform to demonstrate the influence of geometry (e.g., atomic size and bond length) and electronic (e.g., bond strength and bonding scheme) factors toward the oxygen evolution reaction (OER). It was realized that the large Ge atom in the perryite phase can expand the unit cell parameters and interatomic distances (i.e., weaken bond strengths), which facilitates the phase transformation into active metal oxyhydroxide during OER. The quaternary perryite phase, Ni7FeGeP2, displays excellent OER activity and achieves current densities of 20 and 100 mA/cm2 at overpotentials of 239 and 273 mV, respectively. The oxidation state of Ni and Fe in the perryite phase before/after OER was analyzed and discussed. The result suggests that incorporating the Fe element in the system may increase the rate constant of OER (KOER) and therefore keeps the Ni element in a low valance state (i.e., Ni2+). This work indicates that the manipulation of geometry and electronic factors can promote phase transformation as well as OER activity, which exemplifies a strategy to design a promising "precatalyst" for OER.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA