Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Oral Dis ; 22(1): 46-52, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26769076

RESUMEN

OBJECTIVE: To define the increased mRNA expression of Bpifb1, a member of the bactericidal/permeability-increasing protein family, in parotid acinar cells from non-obese diabetic (NOD) mice, an animal model for Sjögren's syndrome. MATERIALS AND METHODS: Parotid acinar cells were prepared from female NOD (NOD/ShiJcl) mice with or without diabetes, as well as from control (C57BL/6JJcl) mice. Total RNA and homogenate were prepared from the parotid acinar cells. Embryonic cDNA from a Mouse MTC(™) Panel I kit was used. The expression of Bpifb1 was determined by cDNA microarray analysis, RT-PCR, real-time PCR, northern blotting and in situ hybridization. RESULTS: The expression of Bpifb1 mRNA was high in parotid acinar cells from diabetic and non-diabetic NOD mice at 5-50 weeks of age. Acinar cells in the C57BL/6 mice had a low expression of Bpifb1 mRNA at an age >8 weeks, but had a relatively high expression in the foetus and infantile stages. CONCLUSIONS: Bpifb1 mRNA is upregulated in parotid acinar cells in NOD mice, but its expression is not related to the onset of diabetes. These findings suggest that high expression levels of Bpifb1 might predict disease traits before the onset of autoimmunity.


Asunto(s)
Proteínas Portadoras/biosíntesis , Diabetes Mellitus Experimental/metabolismo , Glándula Parótida/metabolismo , Células Acinares/metabolismo , Animales , Northern Blotting/métodos , Proteínas Portadoras/genética , Modelos Animales de Enfermedad , Femenino , Hibridación in Situ/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Glándula Parótida/patología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Síndrome de Sjögren/metabolismo , Regulación hacia Arriba
2.
Biochem Biophys Res Commun ; 465(3): 488-93, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26277389

RESUMEN

Acetylcholine (ACh), a known neurotransmitter in animals and acetylcholinesterase (AChE) exists widely in plants, although its role in plant signal transduction is unclear. We previously reported AChE in Zea mays L. might be related to gravitropism based on pharmacological study using an AChE inhibitor. Here we clearly demonstrate plant AChE play an important role as a positive regulator in the gravity response of plants based on a genetic study. First, the gene encoding a second component of the ACh-mediated signal transduction system, AChE was cloned from rice, Oryza sativa L. ssp. Japonica cv. Nipponbare. The rice AChE shared high homology with maize, siratro and Salicornia AChEs. Similar to animal and other plant AChEs, the rice AChE hydrolyzed acetylthiocholine and propionylthiocholine, but not butyrylthiocholine. Thus, the rice AChE might be characterized as an AChE (E.C.3.1.1.7). Similar to maize and siratro AChEs, the rice AChE exhibited low sensitivity to the AChE inhibitor, neostigmine bromide, compared with the electric eel AChE. Next, the functionality of rice AChE was proved by overexpression in rice plants. The rice AChE was localized in extracellular spaces of rice plants. Further, the rice AChE mRNA and its activity were mainly detected during early developmental stages (2 d-10 d after sowing). Finally, by comparing AChE up-regulated plants with wild-type, we found that AChE overexpression causes an enhanced gravitropic response. This result clearly suggests that the function of the rice AChE relate to positive regulation of gravitropic response in rice seedlings.


Asunto(s)
Acetilcolinesterasa/metabolismo , Mejoramiento Genético/métodos , Gravitropismo/fisiología , Oryza/fisiología , Brotes de la Planta/fisiología , Plantas Modificadas Genéticamente/fisiología , Acetilcolinesterasa/genética , Regulación hacia Arriba/fisiología
3.
Prostaglandins Other Lipid Mediat ; 97(1-2): 60-5, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22120546

RESUMEN

Previously, it was reported that chronic intra-uterine infusion of PGE(1) or PGE(2) every 4h inhibited luteolysis in ewes by altering luteal mRNA for luteinizing hormone (LH) receptors and unoccupied and occupied luteal LH receptors. However, estradiol-17ß or PGE(2) given intra-uterine every 8h did not inhibit luteolysis in cows, but infusion of estradiol+PGE(2) inhibited luteolysis. In contrast, intra-luteal implants containing PGE(1) or PGE(2) in Angus or Brahman cows also inhibited the decline in circulating progesterone, mRNA for LH receptors, and loss of unoccupied and occupied receptors for LH to prevent luteolysis. The objective of this experiment was to determine how intra-luteal implants of PGE(1) or PGE(2) alter mRNA for prostanoid receptors and how this could influence luteolysis in Brahman or Angus cows. On day-13 Angus cows received no intra-luteal implant and corpora lutea were retrieved or Angus and Brahman cows received intra-luteal silastic implants containing Vehicle, PGE(1), or PGE(2) and corpora lutea were retrieved on day-19. Corpora lutea slices were analyzed for mRNA for prostanoid receptors (FP, EP1, EP2, EP3 (A-D), EP3A, EP3B, EP3C, EP3D, and EP4) by RT-PCR. Day-13 Angus cow luteal tissue served as pre-luteolytic controls. mRNA for FP receptors decreased in day-19 Vehicle controls compared to day-13 Vehicle controls regardless of breed. PGE(1) and PGE(2) up-regulated FP gene expression on day-19 compared to day-19 Vehicle controls regardless of breed. EP1 mRNA was not altered by any treatment. PGE(1) and PGE(2) down-regulated EP2 and EP4 mRNA compared to day-19 Vehicle controls regardless of breed. PGE(1) or PGE(2) up-regulated mRNA EP3B receptor subtype compared to day-19 Vehicle control cows regardless of breed. The similarities in relative gene expression profiles induced by PGE(1) and PGE(2) support their agonistic effects. We conclude that both PGE(1) and PGE(2) may prevent luteolysis by altering expression of mRNA for prostanoid receptors, which is correlated with changes in luteal mRNA for LH receptors reported previously in these same cows to prevent luteolysis.


Asunto(s)
Alprostadil/farmacología , Cuerpo Lúteo/citología , Cuerpo Lúteo/efectos de los fármacos , Dinoprostona/farmacología , Luteólisis/efectos de los fármacos , Prótesis e Implantes , Receptores de Prostaglandina/genética , Animales , Bovinos , Cuerpo Lúteo/metabolismo , Cuerpo Lúteo/fisiología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Luteólisis/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Subtipo EP1 de Receptores de Prostaglandina E/genética , Subtipo EP2 de Receptores de Prostaglandina E/genética , Subtipo EP3 de Receptores de Prostaglandina E/genética , Subtipo EP4 de Receptores de Prostaglandina E/genética
4.
Prostaglandins Other Lipid Mediat ; 94(1-2): 17-24, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21109016

RESUMEN

Thirty to forty percent of ruminant pregnancies are lost during the first third of gestation due to inadequate progesterone secretion. During the estrous cycle, luteinizing hormone (LH) regulates progesterone secretion by small luteal cells (SLC). Loss of luteal progesterone secretion during the estrous cycle is increased via uterine secretion of prostaglandin F(2α) (PGF(2α)) starting on days 12-13 post-estrus in ewes with up to 4-6 pulses per day. Prostaglandin F(2α) is synthesized from arachidonic acid, which is released from phospholipids by phospholipase A2. Endocannabinoids are also derived from phospholipids and are associated with infertility. Endocannabinoid-induced infertility has been postulated to occur primarily via negative effects on implantation. Cannabinoid (CB) type 1 (CB1) or type 2 (CB2) receptor agonists and an inhibitor of the enzyme fatty acid amide hydrolase, which catabolizes endocannabinoids, decreased luteal progesterone, prostaglandin E (PGE), and prostaglandin F(2α) (PGF(2α)) secretion by the bovine corpus luteum in vitro by 30 percent. The objective of the experiment described herein was to determine whether CB1 or CB2 receptor agonists given in vivo affect circulating progesterone, luteal weights, luteal mRNA for LH receptors, and luteal occupied and unoccupied LH receptors during the estrous cycle of ewes. Treatments were: Vehicle, Methanandamide (CB1 agonist; METH), or 1-(4-chlorobenzoyl)-5-methoxy-1H-indole-3-acetic acid morpholineamide (CB2 agonist; IMMA). Ewes received randomized treatments on day 10 post-estrus. A single treatment (500 µg; N=5/treatment group) in a volume of 1 ml was given into the interstitial tissue of the ovarian vascular pedicle adjacent to the luteal-containing ovary. Jugular venous blood was collected at 0 h and every 6-48 h for the analysis of progesterone by radioimmunoassay (RIA). Corpora lutea were collected at 48 h, weighed, bisected, and frozen in liquid nitrogen until analysis of unoccupied and occupied LH receptors and mRNA for LH receptors. Profiles of jugular venous progesterone, luteal weights, luteal mRNA for LH receptors, and luteal occupied and unoccupied LH receptors were decreased (P≤0.05) by CB1 or CB2 receptor agonists when compared to Vehicle controls. Progesterone in 80 percent of CB1 or CB2 receptor agonist-treated ewes was decreased (P≤0.05) below 1 ng/ml by 48 h post-treatment. It is concluded that the stimulation of either CB1 or CB2 receptors in vivo affected negatively luteal progesterone secretion by decreasing luteal mRNA for LH receptors and also decreasing occupied and unoccupied receptors for LH on luteal membranes. The corpus luteum may be an important site for endocannabinoids to decrease fertility as well as negatively affect implantation, since progesterone is required for implantation.


Asunto(s)
Ácidos Araquidónicos/farmacología , Ácidos Indolacéticos/farmacología , Células Lúteas/metabolismo , Hormona Luteinizante/genética , Morfolinas/farmacología , Progesterona/sangre , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB2/agonistas , Receptores de HL/genética , Animales , Bovinos , Cuerpo Lúteo/anatomía & histología , Ciclo Estral/efectos de los fármacos , Femenino , Hormona Luteinizante/metabolismo , Tamaño de los Órganos , ARN Mensajero/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Receptores de HL/metabolismo
5.
Prostaglandins Other Lipid Mediat ; 95(1-4): 35-44, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21601649

RESUMEN

Previously, it was reported that chronic intra-uterine infusion of PGE(1) or PGE(2) every four hours inhibited luteolysis in ewes. However, estradiol-17ß or PGE(2) given intra-uterine every 8h did not inhibit luteolysis in heifers, but infusion of estradiol+PGE(2) inhibited luteolysis in heifers. The objective of this experiment was to determine whether and how intra-luteal implants containing PGE(1) or PGE(2) prevent luteolysis in Angus or Brahman cows. On day-13 post-estrus, Angus cows received no intra-luteal implant and corpora lutea were retrieved or Angus and Brahman cows received intra-luteal silastic implants containing Vehicle, PGE(1), or PGE(2) and corpora lutea were retrieved on day-19. Coccygeal blood was collected daily for analysis for progesterone. Breed did not influence the effect of PGE(1) or PGE(2) on luteal mRNA for LH receptors or unoccupied or occupied luteal LH receptors did not differ (P>0.05) so the data were pooled. Luteal weights of Vehicle-treated Angus or Brahman cows from days-13-19 were lower (P<0.05) than those treated with intra-luteal implants containing PGE(1) or PGE(2). Day-13 Angus luteal weights were heavier (P<0.05) than Vehicle-treated Angus cows on day-19 and luteal weights of day-13 corpora lutea were similar (P>0.05) to Angus cows on day-19 treated with intra-luteal implants containing PGE(1) or PGE(2). Profiles of circulating progesterone in Angus or Brahman cows treated with intra-luteal implants containing PGE(1) or PGE(2) differed (P<0.05) from controls, but profiles of progesterone did not differ (P>0.05) between breeds or between cows treated with intra-luteal implants containing PGE(1) or PGE(2). Intra-luteal implants containing PGE(1) or PGE(2) prevented (P<0.05) loss of luteal mRNA for LH receptors and unoccupied or occupied receptors for LH compared to controls. It is concluded that PGE(1) or PGE(2) alone delays luteolysis regardless of breed. We also conclude that either PGE(1) or PGE(2) prevented luteolysis in cows by up-regulating expression of mRNA for LH receptors and by preventing loss of unoccupied and occupied LH receptors in luteal tissue.


Asunto(s)
Alprostadil/administración & dosificación , Bovinos/fisiología , Cuerpo Lúteo/efectos de los fármacos , Dinoprostona/administración & dosificación , Luteólisis/efectos de los fármacos , Progesterona/sangre , Receptores de HL/genética , Animales , Cuerpo Lúteo/anatomía & histología , Implantes de Medicamentos , Estro/efectos de los fármacos , Femenino , Expresión Génica/efectos de los fármacos , Tamaño de los Órganos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de HL/metabolismo
6.
Plant Signal Behav ; 16(11): 1961062, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34334124

RESUMEN

Cholinesterase is consisting of acetylcholinesterase (AChE) and pseudocholinesterase in vertebrates and invertebrates. AChE gene has been identified in several plant species, while pseudocholinesterase gene has not yet been found in any plant species. In this study, we report that the AChE gene paralog encodes propionylcholinesterase (PChE), a pseudocholinesterase in rice. PChE was found to be located adjacent to AChE (Os07g0586200) on rice chromosome 7 and designated as Os07g0586100. Phylogenetic tree analysis showed a close relationship between rice AChE and PChE. PChE-overexpressing rice had higher hydrolytic activity toward propionylthiocholine than acetylthiocholine and showed extremely low activity against butyrylthiocholine. Therefore, the PChE gene product was characterized as a propionylcholinesterase, a pseudocholinesterase. The rice PChE displayed lower sensitivity to the cholinesterase inhibitor, neostigmine bromide, than electric eel, maize, and rice AChEs. The recombinant PChE functions as a 171 kDa homotetramer. PChE was expressed during the later developmental stage, and it was found be localized in the extracellular spaces of the rice leaf tissue. These results suggest that the rice plant possesses PChE, which functions in the extracellular spaces at a later developmental stage. To the best of our knowledge, this study provides the first direct evidence and molecular characterization of PChE in plants.


Asunto(s)
Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/genética , Butirilcolinesterasa/metabolismo , Oryza/enzimología , Oryza/genética , Productos Agrícolas/enzimología , Productos Agrícolas/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Filogenia , Análisis de Secuencia de ADN
7.
Biosci Biotechnol Biochem ; 72(10): 2640-50, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18838808

RESUMEN

A cDNA encoding tomato fruit lectin was cloned from an unripe cherry-tomato fruit cDNA library. The isolated lectin cDNA contained an open reading frame encoding 365 amino acids, including peptides that were sequenced. The deduced sequence consisted of three distinct domains: (i) an N-terminal short extensin-like domain; (ii) a Cys-rich carbohydrate binding domain composed of four almost identical chitin-binding domains; (iii) an internal extensin-like domain of 101 residues containing 15 SerPro(4) motifs inserted between the first and second chitin-binding domains. The molecular weight of the lectin was 65,633 and that of the deglycosylated lectin was 32,948, as determined by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). This correlated with the estimated molecular weight of the deduced sequence. Recombinant tomato lectin expressed in Pichia pastoris possessed chitin-binding but not hemagglutinating activity. These findings confirmed that the cDNA encoded tomato lectin.


Asunto(s)
Frutas/química , Frutas/metabolismo , Lectinas de Plantas/química , Lectinas de Plantas/metabolismo , Solanum lycopersicum/química , Secuencia de Aminoácidos , Secuencia de Bases , Cromatografía en Gel , Secuencia Conservada , ADN Complementario/genética , Frutas/genética , Expresión Génica , Glicosilación , Solanum lycopersicum/genética , Datos de Secuencia Molecular , Peso Molecular , Pichia/genética , Pichia/metabolismo , Lectinas de Plantas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
8.
Prostaglandins Other Lipid Mediat ; 84(1-2): 54-65, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17643888

RESUMEN

By day-90, the placenta secretes half of the circulating progesterone and 85% of the circulating estradiol-17beta [Weems YS, Vincent D, Tanaka Y, et al. Effects of prostaglandin F(2alpha) on sources of progesterone and pregnancy in intact, ovariectomized, and hysterectomized 90-100 day pregnant ewes. Prostaglandins 1992;43:203-22; Weems YS, Vincent DL, Nusser K, et al. Effects of prostaglandin F(2alpha) (PGF(2alpha)) on secretion of estradiol-17beta and cortisol in 90-100 day hysterectomized, intact, or ovariectomized pregnant ewes. Prostaglandins 1994;48:139-57]. Ovariectomy (OVX) or prostaglandin (PG) F(2alpha) (PGF(2alpha)) does not abort intact or OVX 90-day pregnant ewes and PGF(2alpha) regresses the corpus luteum, but does not affect placental progesterone secretion in vivo [Weems YS, Vincent D, Tanaka Y, et al. Effects of prostaglandin F(2alpha) on sources of progesterone and pregnancy in intact, ovariectomized, and hysterectomized 90-100 day pregnant ewes. Prostaglandins 1992;43:203-22]. Luteal progesterone secretion in vitro at day-90 of pregnancy in ewes is regulated by PGE(1)and/or PGE(2), not by ovine luteinizing hormone (LH; 3). Concentrations of PGE in uterine or ovarian venous plasma averaged 6 ng/ml at 90-100 days of pregnancy in ewes [Weems YS, Vincent DL, Tanaka Y, Nusser K, Ledgerwood KS, Weems CW. Effect of prostaglandin F(2alpha) on uterine or ovarian secretion of prostaglandins E and F(2alpha) (PGE; PGF(2alpha)) in vivo in 90-100 day hysterectomized, intact or ovariectomized pregnant ewes. Prostaglandins. 1993;46:277-96]. Ovine placental PGE secretion is regulated by LH up to day-50 and by pregnancy specific protein B (PSPB) after day-50 of pregnancy [Weems YS, Kim L, Humphreys V, Tsuda V, Weems CW. Effect of luteinizing hormone (LH), pregnancy specific protein B (PSPB), or arachidonic acid (AA) on ovine endometrium of the estrous cycle or placental secretion of prostaglandins E(2) (PGE(2)) and F(2alpha) (PGF(2alpha)), and progesterone in vitro. Prostaglandins Other Lipid Mediators 2003;71:55-73]. Indomethacin (INDO), a prostaglandin synthesis inhibitor [Lands WEM. The biosynthesis and metabolism of prostaglandins. Annu Rev Physiol 1979;41:633-46], lowers jugular venous progesterone [Bridges PJ, Weems YS, Kim L, et al. Effect of prostaglandin F(2alpha) (PGF(2alpha)), indomethacin, tamoxifen or estradiol-17beta on pregnancy, progesterone and pregnancy specific protein B (PSPB) secretion in 88-90 day pregnant ewes. Prostaglandins Other Lipid Mediators 1999;58:113-24] and inferior vena cava PGE of pregnant ewes with ovaries by half at day-90 [Bridges PJ, Weems YS, Kim L, LeaMaster BR, Vincent DL, Weems CW. Effect of prostaglandin F(2alpha) (PGF(2alpha)), indomethacin, tamoxifen or estradiol-17beta on prostaglandin E (PGE), PGF(2alpha) and estradiol-17beta secretion in 88-90 day pregnant sheep. Prostaglandins Other Lipid Mediators 1999;58:167-78]. In addition, treatment of 90 day ovine diced placental slices with androstenedione in vitro increased placental estradiol-17beta, but treatment with PGF(2alpha)in vitro did not decrease placental progesterone secretion, which indicates that ovine placenta progesterone secretion is resistant to the luteolytic action of PGF(2alpha) [Weems YS, Bridges PJ, LeaMaster BR, Sasser RG, Vincent DL, Weems CW. Secretion of progesterone, estradiol-17beta, prostaglandins (PG) E (PGE), F(2alpha) (PGF(2alpha)), and pregnancy specific protein B (PSPB) by day 90 intact or ovariectomized pregnant ewes. Prostaglandins Other Lipid Mediators 1999;58:139-48]. This also explains why ovine uterine secretion of decreased around day-50 [Weems YS, Kim L, Humphreys V, Tsuda V, Weems CW. Effect of luteinizing hormone (LH), pregnancy specific protein B (PSPB), or arachidonic acid (AA) on ovine endometrium of the estrous cycle or placental secretion of prostaglandins E(2) (PGE(2)) and F(2alpha) (PGF(2alpha)), and progesterone in vitro. Prostaglandins Other Lipid Mediators 2003;71:55-73], when placental estradiol-17beta secretion is increasing [Weems C, Weems Y, Vincent D. Maternal recognition of pregnancy and maintenance of gestation in sheep. In: Reproduction and animal breeding: advances and strategies. Enne G, Greppi G, Lauria A, editors, Elsevier Pub., Amsterdam 1995. p. 277-93]. Treatment of 90 day pregnant ewes with estradiol-17beta+ PGF(2alpha), but not either treatment alone, caused a linear increase in both estradiol-17beta and PGF(2alpha) and ewes were aborting [Bridges PJ, Weems YS, Kim L, Sasser RG, LeaMaster BR, Vincent DL, Weems CW. Effect of prostaglandin F(2alpha) (PGF(2alpha)), indomethacin, tamoxifen or estradiol-17beta on pregnancy, progesterone and pregnancy specific protein B (PSPB) secretion in 88-90 day pregnant ewes. Prostaglandins Other Lipid Mediators 1999;58:113-24; Bridges PJ, Weems YS, Kim L, LeaMaster BR, Vincent DL, Weems CW. Effect of prostaglandin F(2alpha) (PGF(2alpha)), indomethacin, tamoxifen or estradiol-17beta on prostaglandin E (PGE), PGF(2alpha) and estradiol-17beta secretion in 88-90 day pregnant sheep. Prostaglandins Other Lipid Mediators 1999;58:167-78]. Pregnant ewes OVX on day 83 of pregnancy and placental slices cultured in vitro secretes 2-3-fold more estradiol-17beta, PSPB, PGE, and progesterone than placental slices from 90 day intact pregnant ewes, but placental PGF(2alpha) secretion by placental slices from intact or OVX ewes did not change [Denamur R, Kann G, Short R V. How does the corpus luteum of the sheep know that there is an embryo in the uterus? In: Pierrepont G, editor. Endocrinology of pregnancy and parturition, vol. 2. Cardiff, Wales, UK: Alpha Omega Pub Co.; 1973. p. 4-38]. The objective of these experiments was to determine what regulates ovine placental progesterone and estradiol-17beta secretion at day-90 of pregnancy, since the hypophysis [Casida LE, Warwick J. The necessity of the corpus luteum for maintenance of pregnancy in the ewe. J Anim Sci 1945;4:34-9] or ovaries [Weems CW, Weems YS, Randel RD. Prostaglandins and reproduction in female farm animals. Vet J 2006;171:206-28] are not necessary after day-55 to maintain pregnancy. In Experiment 1, diced placental slices from day-90 intact or OVX pregnant ewes that were ovariectomized or laparotomized and ovaries were not removed on day 83 were collected on day-90 and incubated in vitro in M-199 with Vehicle, ovine luteinizing hormone (oLH), ovine follicle stimulating hormone (oFSH), ovine placental lactogen (oPL), PGE(l), PGE(2), PGD(2), PGI(2), insulin-like growth factor (IGF) 1 or 2 (IGF(l); IGF(2)), leukotriene C(4) (LTC(4)), platelet activating factor (PAF) 16 or 18 (PAF-16; PAF-18) at doses of 0, 1, 10, or 100ng/ml for 4h. In Experiment 2, placental slices from day-90 intact and OVX (intact or OVX laporotomized 7 days earlier) pregnant ewes were incubated in vitro with vehicle, INDO, Meclofenamate (MECLO), PGE(l), PGE(2), INDO+PGE(1), MECLO+PGE(l), INDO+PGE(2), or MECLO+PGE(2) for 4h. Media were analyzed for progesterone, estradiol-17beta, PGE, or PGF(2alpha) by RIA. Hormone data in media were analyzed in Experiment 1 by a 2x3x13 and in Experiment 2 by a 2x9 Factorial Design for ANOVA. In Experiment 1, placental progesterone, PGE, or estradiol-17beta secretion were increased (P< or =0.05) two-fold by OVX. Progesterone was not increased (P> or =0.05) by any treatment other than OVX and only FSH increased (P< or =0.05) estradiol-17beta secretion by placental slices in both OVX and intact ewes 90-day pregnant ewes. In Experiment 2, INDO or MECLO decreased (P< or =0.05) placental progesterone secretion by 88% but did not decrease (P> or =0.05) placental estradiol-17beta secretion from intact or OVX ewes. PGE(l) or PGE(2) increased (P< or =0.05) progesterone secretion only in ewes treated with INDO or MECLO. It is concluded that FSH probably regulates day-90 ovine placental estradiol-17beta secretion, while PGE(l) or PGE(2) regulates day-90 placental progesterone secretion.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Placenta/metabolismo , Preñez , Esteroides/metabolismo , Animales , Inhibidores de la Ciclooxigenasa/farmacología , Dinoprost/metabolismo , Estradiol/metabolismo , Femenino , Indometacina/farmacología , Ácido Meclofenámico/farmacología , Embarazo , Progesterona/metabolismo , Prostaglandinas E/metabolismo , Ovinos
9.
Theriogenology ; 95: 8-17, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28460684

RESUMEN

In previous work, an EP2 prostanoid receptor (EP2R) agonist in vivo increased mRNA expression of luteal LH receptors (LHR), unoccupied and occupied luteal; LHR, and circulating progesterone, while an EP3R or FPR agonist decreased; mRNA expression of luteal LHR, unoccupied and occupied luteal LHR, and; circulating progesterone. An EP4R and lysophosphatidic acid (LPA) LPA2R and LPA3R agonists were reported to inhibit luteal function and sirtuins have been proposed to increase prostaglandin synthesis. The objectives were to determine; whether an EP4R, LPA2R, or LPA3R agonist affect ovine luteal function in vivo or; in vitro. In addition, whether sirtuin (SIRT)-1, 2, or 3; LPA2R or LPA3R; or EP1R, EP2R, EP3R, or EP4R agonists affect caruncular endometrial PGF2α or PGE (PGE1+PGE2) secretion in vitro. Day-10 nonpregnant ewes received a single injection of Vehicle (N = 5); an LPA2R (N = 5); LPA3R (N = 6); or EP4R (N = 5) agonist given into the interstitial tissue of the ovarian vascular pedicle adjacent to the luteal-containing ovary to determine effects on circulating progesterone, mRNA expression of luteal LHR, and luteal unoccupied and occupied LHR. In addition, agonists for LPA2R, LPA3R, EP1R, EP2R, EP3R, or EP4R or SIRT-1, SIRT-2, or SIRT-3 activators were incubated with caruncular endometrial slices in vitro to determine their effect on caruncular endometrial PGF2α, or PGE secretion. LPA2R, LPA3R, or an EP4R agonist in vivo did not affect (P ≥ 0.05) luteal weight, circulating progesterone, or occupied luteal LHR. However, an LPA2R or EP4R agonist, but; not LPA3R agonist, in vivo increased (P ≤ 0.05) mRNA expression of luteal LHR. An; LPA2R, LPA3R, or EP4R agonist increased (P ≤ 0.05) luteal unoccupied LHR, but; not occupied LHR. An LPA2R, LPA3R, or an EP4R agonist did not affect (P ≥ 0.05); luteal progesterone secretion in vitro. An LPA2R or LPA3R agonist did not affect (P ≥ 0.05) luteal PGF2α, or PGE secretion in vitro. However, an EP4R agonist tended to decrease (P < 0.066) luteal PGF2α secretion and increased (P ≤ 0.05) luteal PGE; secretion in vitro. EP1R, EP2R, EP3R, or an EP4R agonist did not affect (P ≥ 0.05); caruncular endometrial PGF2α secretion in vitro. However, EP1R, EP3R, or an EP4R agonist increased caruncular endometrial PGE secretion in vitro, while two different EP2R agonists did not affect (P ≥ 0.05) caruncular endometrial PGE; secretion. A SIRT-1 activator, but not SIRT-2 or SIRT-3 activators, increased (P ≤ 0.05) caruncular endometrial PGE secretion, while sirtuin 1, 2, or 3 activators did not affect (P ≥ 0.05) caruncular endometrial PGF2α secretion. In conclusion, receptors for EP4, LPA2, and LPA3 do not appear to be involved; in luteolysis, but EP4R and LPA2R might participate in preventing luteolysis by maintaining luteal mRNA expression for LHR and preventing loss of unoccupied luteal LHR. In addition, SIRT-1, EP1R, EP3R, and EP4R might be involved in; regulating caruncular endometrial PGE secretion, but not PGF2α secretion.


Asunto(s)
Cuerpo Lúteo/efectos de los fármacos , Endometrio/efectos de los fármacos , Prostaglandinas E/metabolismo , Receptores del Ácido Lisofosfatídico/agonistas , Subtipo EP4 de Receptores de Prostaglandina E/agonistas , Receptores de Prostaglandina E/agonistas , Sirtuinas/farmacología , Alprostadil/metabolismo , Animales , Cuerpo Lúteo/fisiología , Dinoprost/metabolismo , Endometrio/fisiología , Femenino , Lisofosfolípidos/agonistas , Lisofosfolípidos/antagonistas & inhibidores , Progesterona/sangre , Progesterona/metabolismo , ARN Mensajero/metabolismo , Ovinos
10.
Plant Signal Behav ; 11(4): e1163464, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26979939

RESUMEN

Acetylcholinesterase (AChE), an acetylcholine-hydrolyzing enzyme, exists widely in plants, although its role in plant signal transduction is still unclear. We have hypothesized that the plant AChE regulates asymmetric distribution of hormones and substrates due to gravity stimulus, based on indirect pharmacological experiments using an AChE inhibitor. As a direct evidence for this hypothesis, our recent study has shown that AChE overexpression causes an enhanced gravitropic response in rice seedlings and suggested that the function of the rice AChE relates to the promotion of shoot gravitropism in the seedlings. Here, we report that AChE suppression inhibited shoot gravitropism in rice seedlings, as supportive evidence demonstrating the role of AChE as a positive regulator of shoot gravitropic response in plants.


Asunto(s)
Acetilcolinesterasa/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Gravitropismo/genética , Oryza/genética , Oryza/fisiología , Proteínas de Plantas/genética , Brotes de la Planta/fisiología , Acetilcolinesterasa/metabolismo , Silenciador del Gen , Oryza/enzimología , Proteínas de Plantas/metabolismo , Brotes de la Planta/genética , Plantas Modificadas Genéticamente
11.
Prostaglandins Other Lipid Mediat ; 78(1-4): 264-78, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16303621

RESUMEN

Synchronization of estrus with progestins in cows has been reported to inhibit nitric oxide (NO) and endothelin-1 (ET-1)-stimulated bovine luteal PGE secretion without affecting prostaglandin F2alpha (PGF2alpha) secretion in vitro [Weems YS, Randel RD, Tatman S, Lewis A, Neuendorff DA, Weems CW. Does estrous synchronization affect corpus luteum (CL) function? Prostaglandins Other Lipid Mediat 2004;74:45-59]. Two experiments were conducted to determine the effects of NO donors, endothelin-1 (ET-1), and NO synthase (NOS) inhibitors on bovine caruncular endometrial secretion of PGE and PGF2alpha in vitro. In Experiment 1, estrus was synchronized in Brahman cows with Synchromate-B ear implants, which contained the synthetic progestin norgestamet. Days 14-15 caruncular endometrial slices were weighed, diced, and incubated in vitro with treatments. Treatments (100 ng/ml) were: Vehicle (control), l-NAME (NOS inhibitor), l-NMMA (NOS inhibitor), DETA (control), DETA-NONOate (NO donor), sodium nitroprusside (NO donor), or ET-1. In Experiment 2, estrus was synchronized in Brahman cows with either Lutalyse (PGF2alpha) or a controlled intravaginal drug releasing device (CIDR-containing progesterone) or estrus was not synchronized. Days 14-15 caruncular endometrial slices were weighed, diced, and incubated in vitro with treatments. Treatments (100 ng/ml) were: vehicle, l-NAME, l-NMMA, DETA, DETA-NONOate, sodium nitroprusside, SNAP (NO donor) or ET-1. Tissues were incubated in M-199 for 1h without treatments and with treatments for 4 and 8h in both experiments. Media were analyzed for concentrations of PGE and PGF2alpha by radioimmunoassay (RIA). Hormone data in Experiments 1 and 2 were analyzed by 2x7 and 3x2x8 factorial design for ANOVA, respectively. Concentrations of PGE and PGF2alpha in media increased (P< or =0.05) from 4 to 8 h regardless of treatment group in Experiment 1, but did not differ (P> or =0.05) among treatments. In Experiment 2, concentrations of PGE and PGF2alpha increased (P< or =0.05) with time in all treatment groups of all three synchronization regimens. DETA-NONOate, SNAP, and sodium nitroprusside (NO donors) and ET-1 increased caruncular endometrial (P< or =0.05) secretion of PGE2 in unsynchronized and Lutalyse synchronized cows, but not when estrus was synchronized with a CIDR (P> or =0.05). No treatment increased (P> or =0.05) PGF2alpha in any synchronization regimen. It is concluded that norgestamet in Synchromate-B ear implants or progesterone in a CIDR alters NO or ET-1-induced secretion of PGE by bovine caruncular endometrium and could interfere with implantation by altering the PGE:PGF2alpha ratio resulting in increased embryonic losses during early pregnancy.


Asunto(s)
Endometrio/efectos de los fármacos , Endotelina-1/fisiología , Óxido Nítrico/fisiología , Progestinas/farmacología , Antagonistas de Prostaglandina/farmacología , Prostaglandinas E/metabolismo , Animales , Bovinos , Endometrio/metabolismo , Femenino , Técnicas In Vitro , Prostaglandinas E/antagonistas & inhibidores
12.
FEBS Lett ; 415(3): 281-4, 1997 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-9357983

RESUMEN

We immunohistochemically examined the distribution of glucokinase in rat pancreatic islets. Glucokinase immunoreactivity under light microscopy was detected in the cytoplasm of somatostatin cells as well as in that of insulin cells. No specific immunoreactivity was detected in glucagon and pancreatic polypeptide cells. In somatostatin cells, glucokinase immunoreactivity was located by electron microscopy exclusively within secretory granules.


Asunto(s)
Gránulos Citoplasmáticos/enzimología , Glucoquinasa/análisis , Células Secretoras de Somatostatina/enzimología , Animales , Glucagón/análisis , Inmunohistoquímica , Insulina/análisis , Islotes Pancreáticos/química , Islotes Pancreáticos/citología , Islotes Pancreáticos/enzimología , Masculino , Microscopía Electrónica , Polipéptido Pancreático/análisis , Ratas , Ratas Wistar , Somatostatina/análisis , Células Secretoras de Somatostatina/ultraestructura
13.
Physiol Behav ; 49(5): 887-9, 1991 May.
Artículo en Inglés | MEDLINE | ID: mdl-1653431

RESUMEN

The chemosensory gustatory cells in taste buds form chemical synapses with intragemmal neurites. We investigated the ultrastructure of the guinea pig gustatory cells after stimulation with a mixture of monosodium L-glutamate and guanosine 5'-monophosphate. The gustatory cells responded to the stimulus. The dense-cored vesicles localized in the presynaptic regions discharged the contents into the synaptic cleft by means of exocytosis, which resulted in a marked decrease of their population. These findings strongly suggest that the transmitter or transmitters contained in the vesicles are released in response to the taste stimulation at the cell apex, to conduct the excitement of the cell to the nerves.


Asunto(s)
Guanosina Monofosfato/farmacología , Glutamato de Sodio/farmacología , Transmisión Sináptica/efectos de los fármacos , Papilas Gustativas/efectos de los fármacos , Gusto/efectos de los fármacos , Animales , Exocitosis/efectos de los fármacos , Exocitosis/fisiología , Cobayas , Masculino , Microscopía Electrónica , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Membranas Sinápticas/efectos de los fármacos , Membranas Sinápticas/fisiología , Transmisión Sináptica/fisiología , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/fisiología , Gusto/fisiología , Papilas Gustativas/anatomía & histología
14.
J Biosci Bioeng ; 92(4): 346-53, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-16233109

RESUMEN

The metallurgic wastewater generated from the processes of recovering precious metals from industrial wastes contains high concentrations of nitrogen compounds and salts. Biological nitrogen removal from this wastewater was attempted using a circulating bioreactor system equipped with an anaerobic packed bed or an anaerobic fluidized bed. The denitrification capability of the system with the anaerobic packed bed was more stable than that of the system with the anaerobic fluidized bed. The NOx removal rate of the anaerobic packed bed was as high as 97%. Microbial community analysis by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA (rDNA) fragments and the cultivation method revealed that the community diversity varied in accordance with wastewater composition such as the level of salinity and so on. Phylogenetic analysis suggested that the taxonomic affiliation of the dominant species in the anaerobic reactors was to the gamma-Proteobacteria including Halomonadaceae species. The PCR-DGGE method as a non-cultivation method was found to be a powerful tool for analysis of the microbial community, because the cultivation method could detect only a fraction of the microbial species present in these systems. The genetic diversity of the isolated bacteria belonging to the gamma-Proteobacteria which reduced both nitrate and nitrite in the anaerobic packed bed was higher than that of the bacteria in the anaerobic fluidized bed. This suggested that a genetically diverse microbial community stabilized the denitrifying performance in the anaerobic packed bed.

15.
Water Sci Technol ; 46(1-2): 333-6, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12216646

RESUMEN

The wastewater generated from the processes of recovering precious metals from industrial wastes contains high concentrations of acids such as nitric acid and of salts. Biological nitrogen removal from this wastewater was attempted by using a circulating bioreactor system equipped with an anoxic packed bed or an anoxic fluidized bed and an aerobic three-phase fluidized bed. The system was found to effectively remove nitrogen from the diluted wastewater (T-N; 1,000-4,000 mg litre(-1)). The microbial population structure of activated sludge in an anoxic reactor was analyzed by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA (rDNA) fragments. DGGE analysis under different operating conditions demonstrated the presence of some distinguishable bands in the separation pattern, which were most likely derived from many different species constituting the microbial communities. Furthermore, the population diversity varied in accordance with the nitrate-loading rate, water temperature and reactor condition. Some major DGGE bands were excised, reamplified and directly sequenced. It was revealed that the dominant population in the anoxic reactor were affiliated with the beta subclass of the class Proteobacteria.


Asunto(s)
Metalurgia , Nitrógeno/metabolismo , Proteobacteria/fisiología , ARN Ribosómico 16S/genética , Eliminación de Residuos Líquidos , Reactores Biológicos , ADN Bacteriano/análisis , Electroforesis , Reacción en Cadena de la Polimerasa , Dinámica Poblacional , Proteobacteria/genética , ARN Ribosómico 16S/análisis
16.
Water Sci Technol ; 46(11-12): 93-8, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12523738

RESUMEN

The metallurgic wastewater generated from the processes of recovering precious metals from industrial wastes contains high concentrations of nitrogen compounds such as ammonia and nitric acid and of salts such as sodium chloride and sodium sulfate. Biological nitrogen removal from this wastewater was attempted by a circulating bioreactor system equipped with an anoxic packed bed and an aerobic fluidized bed. The anoxic packed bed of this system was found to effectively remove nitrite and nitrate from the wastewater by denitrification at a removal ratio of 97%. As a result of denitrification activity tests at various NaCl concentrations, the sludge obtained from the anoxic packed bed exhibited accumulation of nitrite at 5.0 and 8.4% NaCl concentrations, suggesting that the reduction of nitrite is the key step in the denitrification pathway under hypersaline conditions. The microbial community analysis by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA (rDNA) fragments revealed that the community diversity varied in accordance with water temperature, nitrate-loading rate and ionic strength. When particular major DGGE bands were excised, reamplified and directly sequenced, the dominant species in the anoxic packed bed were affiliated with the beta and gamma subclasses of the class Proteobacteria such as Alcaligenes defragrans and Pseudomonas spp., respectively.


Asunto(s)
Metalurgia , Nitrógeno/metabolismo , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos , ADN Bacteriano , Electroforesis en Gel Bidimensional , Residuos Industriales , Nitritos/análisis , Nitrógeno/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Dinámica Poblacional , Proteobacteria/genética , Proteobacteria/fisiología , ARN Ribosómico 16S/análisis , Temperatura , Movimientos del Agua
17.
Theriogenology ; 82(3): 440-6, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24908337

RESUMEN

The objective of this study was to determine whether PGE1 or PGE2 prevents a premature luteolysis when oxytocin is given on Days 1 to 6 of the ovine estrous cycle. Oxytocin given into the jugular vein every 8 hours on Days 1 to 6 postestrus in ewes decreased (P ≤ 0.05) luteal weights on Day 8 postestrus. Plasma progesterone differed (P ≤ 0.05) among the treatment groups; toward the end of the experimental period, concentrations of circulating progesterone in the oxytocin-only treatment group decreased (P ≤ 0.05) when compared with the other treatment groups. Plasma progesterone concentrations in ewes receiving PGE1 or PGE1 + oxytocin were greater (P ≤ 0.05) than in vehicle controls or in ewes receiving PGE2 or PGE2 + oxytocin and was greater (P ≤ 0.05) in all treatment groups receiving PGE1 or PGE2 than in ewes treated only with oxytocin. Chronic intrauterine treatment with PGE1 or PGE2 also prevented (P ≤ 0.05) oxytocin decreases in luteal unoccupied and occupied LH receptors on Day 8 postestrus. Oxytocin given alone on Days 1 to 6 postestrus in ewes advanced (P ≤ 0.05) increases in PGF2α in inferior vena cava or uterine venous blood. PGE1 or PGE2 given alone did not affect (P ≥ 0.05) concentrations of PGF2α in inferior vena cava and uterine venous blood when compared with vehicle controls or oxytocin-induced PGF2α increases (P ≤ 0.05) in inferior vena cava or uterine venous blood. We concluded that PGE1 or PGE2 prevented oxytocin-induced premature luteolysis by preventing a loss of luteal unoccupied and occupied LH receptors.


Asunto(s)
Alprostadil/farmacología , Dinoprostona/farmacología , Estro/efectos de los fármacos , Oxitocina/farmacología , Ovinos/fisiología , Alprostadil/administración & dosificación , Animales , Dinoprostona/administración & dosificación , Luteólisis/efectos de los fármacos , Progesterona/sangre , Factores de Tiempo
18.
Theriogenology ; 82(9): 1224-30, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25219846

RESUMEN

Previously, it was reported that intraluteal implants containing prostaglandin E1 or E2 (PGE1 and PGE2) in Angus or Brahman cows prevented luteolysis by preventing loss of mRNA expression for luteal LH receptors and luteal unoccupied and occupied LH receptors. In addition, intraluteal implants containing PGE1 or PGE2 upregulated mRNA expression for FP prostanoid receptors and downregulated mRNA expression for EP2 and EP4 prostanoid receptors. Luteal weight during the estrous cycle of Brahman cows was reported to be lesser than that of Angus cows but not during pregnancy. The objective of this experiment was to determine whether intraluteal implants containing PGE1 or PGE2 alter vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), angiopoietin-1 (ANG-1), and angiopoietin-2 (ANG-2) protein in Brahman or Angus cows. On Day 13 of the estrous cycle, Angus cows received no intraluteal implant and corpora lutea were retrieved, or Angus and Brahman cows received intraluteal silastic implants containing vehicle, PGE1, or PGE2 on Day 13 and corpora lutea were retrieved on Day 19. Corpora lutea slices were analyzed for VEGF, FGF-2, ANG-1, and ANG-2 angiogenic proteins via Western blot. Day-13 Angus cow luteal tissue served as preluteolytic controls. Data for VEGF were not affected (P > 0.05) by day, breed, or treatment. PGE1 or PGE2 increased (P < 0.05) FGF-2 in luteal tissue of Angus cows compared with Day-13 and Day-19 Angus controls but decreased (P < 0.05) FGF-2 in luteal tissue of Brahman cows when compared w Day-13 or Day-19 Angus controls. There was no effect (P > 0.05) of PGE1 or PGE2 on ANG-1 in Angus luteal tissue when compared with Day-13 or Day-19 controls, but ANG-1 was decreased (P < 0.05) by PGE1 or PGE2 in Brahman cows when compared with Day-19 Brahman controls. ANG-2 was increased (P < 0.05) on Day 19 in Angus Vehicle controls when compared with Day-13 Angus controls, which was prevented (P < 0.05) by PGE1 but not by PGE2 in Angus cows. There was no effect (P > 0.05) of PGE1 or PGE2 on ANG-2 in Brahman cows. PGE1 or PGE2 may alter cow luteal FGF-2, ANG-1, or ANG-2 but not VEGF to prevent luteolysis; however, species or breed differences may exist.


Asunto(s)
Alprostadil/farmacología , Inductores de la Angiogénesis/metabolismo , Cuerpo Lúteo/efectos de los fármacos , Dinoprostona/farmacología , Implantes de Medicamentos/farmacología , Angiopoyetina 1/metabolismo , Angiopoyetina 2/metabolismo , Animales , Bovinos , Femenino , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
Theriogenology ; 80(5): 507-12, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23800694

RESUMEN

The objective of this study was to determine whether prostaglandin E1 (PGE1) or prostaglandin E2 (PGE2) prevents premature luteolysis in ewes when progesterone is given during the first 6 days of the estrous cycle. Progesterone (3 mg in oil, im) given twice daily from Days 1 to 6 (estrus = Day 0) in ewes decreased (P < 0.05) luteal weights on Day 10 postestrus. Plasma progesterone concentrations differed (P < 0.05) among the treatment groups; toward the end of the experimental period, concentrations in jugular venous blood decreased (P < 0.05) compared with the other treatment groups. Plasma progesterone concentrations in ewes receiving PGE1 or PGE1 + progesterone were greater (P < 0.05) than in vehicle controls or in ewes receiving PGE2 or PGE2 or PGE2 + progesterone. Chronic intrauterine treatment with PGE1 or PGE2 prevented (P < 0.05) decreases in plasma progesterone concentrations, luteal weights, and the proportion of luteal unoccupied and occupied LH receptors on Day 10 postestrus in ewes given exogenous progesterone, but did not affect (P > 0.05) concentrations of PGF2α in inferior vena cava blood. Progesterone given on Days 1 to 6 in ewes advanced (P < 0.05) increases in PGF2α in inferior vena cava blood. We concluded that PGE1 or PGE2 prevented progesterone-induced premature luteolysis by suppressing loss of luteal LH receptors (both unoccupied and occupied).


Asunto(s)
Alprostadil/farmacología , Dinoprostona/farmacología , Ciclo Estral , Luteólisis/efectos de los fármacos , Progesterona/farmacología , Ovinos/fisiología , Animales , Progesterona/sangre
20.
Plant Signal Behav ; 7(3): 301-5, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22476469

RESUMEN

Our recent study reported that maize acetylcholinesterase (AChE) activity in the coleoptile node is enhanced through a post-translational modification response to heat stress and transgenic plants overexpressing maize AChE gene had an elevated heat tolerance, which strongly suggests that maize AChE plays a positive, important role in maize heat tolerance. Here we present (1) maize AChE activity in the mesocotyl also enhances during heat stress and (2) maize AChE mainly localizes in vascular bundles including endodermis and epidermis in coleoptile nodes and mesocotyls of maize seedlings.


Asunto(s)
Acetilcolinesterasa/metabolismo , Calor , Zea mays/enzimología , Zea mays/fisiología , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA