Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 139: 108863, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37277050

RESUMEN

Cholesterol metabolism can be dynamically altered in response to pathogen infection that ensure proper macrophage inflammatory function in mammals. However, it is unclear whether the dynamic between cholesterol accumulation and breakdown could induce or suppress inflammation in aquatic animal. Here, we aimed to investigate the cholesterol metabolic response to LPS stimulation in coelomocytes of Apostichopus japonicus, and to elucidate the mechanism of lipophagy in regulating cholesterol-related inflammation. LPS stimulation significantly increased intracellular cholesterol levels at early time point (12 h), and the increase in cholesterol levels is associated with AjIL-17 upregulation. Excessive cholesterol in coelomocytes of A. japonicus was rapidly converted to cholesteryl esters (CEs) and stored in lipid droplets (LDs) after 12 h of LPS stimulation and prolonged for 18 h. Then, increased colocalization of LDs with lysosomes was observed at late time point of LPS treatment (24 h), accompanied by elevated expression of AjLC3 and decreased expression of Ajp62. At the same time, the expression of AjABCA1 rapidly increased, suggesting lipophagy induction. Moreover, we demonstrated that AjATGL is required for induction of lipophagy. Inducing lipophagy by AjATGL overexpression attenuated cholesterol-induced AjIL-17 expression. Overall, our study provides evidence that cholesterol metabolic response occurs upon LPS stimulation, which is actively involved in regulating the inflammatory response of coelomocytes. AjATGL-mediated lipophagy is responsible for cholesterol hydrolysis, thereby balancing cholesterol-induced inflammation in the coelomocytes of A. japonicus.


Asunto(s)
Stichopus , Animales , Lipopolisacáridos/farmacología , Inflamación/inducido químicamente , Autofagia , Colesterol , Mamíferos
2.
Fish Shellfish Immunol ; 135: 108701, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36948368

RESUMEN

Organisms trigger pro-inflammatory responses to resist the invasion of foreign pathogens in the early infection stage. However, excessive or chronic inflammation can also cause several diseases. We previously validated IL-17 from sea cucumbers mediated inflammatory response by the IL-17R-TRAF6 axis. But the anti-inflammatory effect was largely unknown in the species. In this study, the conserved PPARα gene was obtained from Apostichopus japonicus by RNA-seq and RACE approaches. The expression of AjPPARα was found to be significantly induced at the late stage of infection not only in Vibrio splendidus-challenged sea cucumbers, but also in LPS-exposed coelomocytes, which was negative correlation to that of AjIL-17 and AjNLRP3. Both silencing AjPPARα by specific siRNA and treatment with AjPAPRα inhibitor MK-886 could significantly upregulate the transcriptional levels of pro-inflammatory factors the AjIL-17 and AjNLRP3. The infiltration of inflammatory cells and tissues damage were also detected in the body walls in the same condition. In contrast, AjPAPRα agonist of WY14643 treatment could alleviate the V. splendidus-induced tissue injury. To further explore the molecular mechanism of AjPPARα-mediated anti-inflammatory in A. japonicus, the expression of the transcriptional factors of AjStat5 and AjRel (subunit of NF-κB) were investigated under AjPPARα aberrant expression conditions and found that AjRel exhibited a negative regulatory relationship to AjPPARα. Furthermore, silencing AjRel was led to down-regulation of AjIL-17 and AjNLRP3. Taken together, our results supported that AjPPARα exerted anti-inflammatory effects through inhibiting AjRel in response to V. splendidus infection.


Asunto(s)
Pepinos de Mar , Stichopus , Vibrio , Animales , Stichopus/genética , Stichopus/metabolismo , FN-kappa B/metabolismo , PPAR alfa/genética , Vibrio/fisiología , Inflamación/inducido químicamente , Inmunidad Innata
3.
Zool Res ; 44(5): 905-918, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37575045

RESUMEN

Previous studies have shown that Vibrio splendidus infection causes mitochondrial damage in Apostichopus japonicus coelomocytes, leading to the production of excessive reactive oxygen species (ROS) and irreversible apoptotic cell death. Emerging evidence suggests that mitochondrial autophagy (mitophagy) is the most effective method for eliminating damaged mitochondria and ROS, with choline dehydrogenase (CHDH) identified as a novel mitophagy receptor that can recognize non-ubiquitin damage signals and microtubule-associated protein 1 light chain 3 (LC3) in vertebrates. However, the functional role of CHDH in invertebrates is largely unknown. In this study, we observed a significant increase in the mRNA and protein expression levels of A. japonicus CHDH (AjCHDH) in response to V. splendidus infection and lipopolysaccharide (LPS) challenge, consistent with changes in mitophagy under the same conditions. Notably, AjCHDH was localized to the mitochondria rather than the cytosol following V. splendidus infection. Moreover, AjCHDH knockdown using siRNA transfection significantly reduced mitophagy levels, as observed through transmission electron microscopy and confocal microscopy. Further investigation into the molecular mechanisms underlying CHDH-regulated mitophagy showed that AjCHDH lacked an LC3-interacting region (LIR) for direct binding to LC3 but possessed a FB1 structural domain that binds to SQSTM1. The interaction between AjCHDH and SQSTM1 was further confirmed by immunoprecipitation analysis. Furthermore, laser confocal microscopy indicated that SQSTM1 and LC3 were recruited by AjCHDH in coelomocytes and HEK293T cells. In contrast, AjCHDH interference hindered SQSTM1 and LC3 recruitment to the mitochondria, a critical step in damaged mitochondrial degradation. Thus, AjCHDH interference led to a significant increase in both mitochondrial and intracellular ROS, followed by increased apoptosis and decreased coelomocyte survival. Collectively, these findings indicate that AjCHDH-mediated mitophagy plays a crucial role in coelomocyte survival in A. japonicus following V. splendidus infection.


Asunto(s)
Stichopus , Vibriosis , Animales , Colina-Deshidrogenasa/metabolismo , Células HEK293 , Mitofagia/genética , Especies Reactivas de Oxígeno/metabolismo , Proteína Sequestosoma-1/metabolismo , Stichopus/metabolismo , Vibriosis/veterinaria
4.
Zool Res ; 43(2): 285-300, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35238186

RESUMEN

Organisms produce high levels of reactive oxygen species (ROS) to kill pathogens or act as signaling molecules to induce immune responses; however, excessive ROS can result in cell death. To maintain ROS balance and cell survival, mitophagy selectively eliminates damaged mitochondria via mitophagy receptors in vertebrates. In marine invertebrates, however, mitophagy and its functions remain largely unknown. In the current study, Vibrio splendidus infection damaged mitochondrial morphology in coelomocytes and reduced mitochondrial membrane potential (ΔΨm) and mitophagosome formation. The colocalization of mitochondria and lysosomes further confirmed that lipopolysaccharide (LPS) treatment increased mitophagy flux. To explore the regulatory mechanism of mitophagy, we cloned Bcl2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), a common mitophagy receptor, from sea cucumber Apostichopus japonicus (AjBNIP3) and confirmed that AjBNIP3 was significantly induced and accumulated in mitochondria after V. splendidus infection and LPS exposure. At the mitochondrial membrane, AjBNIP3 interacts with microtubule-associated protein 1 light chain 3 (LC3) on phagophore membranes to mediate mitophagy. After AjBNIP3 interference, mitophagy flux decreased significantly. Furthermore, AjBNIP3-mediated mitophagy was activated by ROS following the addition of exogenous hydrogen peroxide (H2O2), ROS scavengers, and ROS inhibitors. Finally, inhibition of BNIP3-mediated mitophagy by AjBNIP3 small interfering RNA (siRNA) or high concentrations of lactate increased apoptosis and decreased coelomocyte survival. These findings highlight the essential role of AjBNIP3 in damaged mitochondrial degradation during mitophagy. This mitophagy activity is required for coelomocyte survival in A. japonicus against V. splendidus infection.


Asunto(s)
Stichopus , Animales , Peróxido de Hidrógeno , Mitofagia/genética , Especies Reactivas de Oxígeno/metabolismo , Stichopus/genética , Stichopus/metabolismo , Vibrio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA