Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Mol Cell ; 83(4): 556-573.e7, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36696898

RESUMEN

The protection of DNA replication forks under stress is essential for genome maintenance and cancer suppression. One mechanism of fork protection involves an elevation in intracellular Ca2+ ([Ca2+]i), which in turn activates CaMKK2 and AMPK to prevent uncontrolled fork processing by Exo1. How replication stress triggers [Ca2+]i elevation is unclear. Here, we report a role of cytosolic self-DNA (cytosDNA) and the ion channel TRPV2 in [Ca2+]i induction and fork protection. Replication stress leads to the generation of ssDNA and dsDNA species that, upon translocation into cytoplasm, trigger the activation of the sensor protein cGAS and the production of cGAMP. The subsequent binding of cGAMP to STING causes its dissociation from TRPV2, leading to TRPV2 derepression and Ca2+ release from the ER, which in turn activates the downstream signaling cascade to prevent fork degradation. This Ca2+-dependent genome protection pathway is also activated in response to replication stress caused by oncogene activation.


Asunto(s)
ADN , Nucleotidiltransferasas , ADN/genética , ADN/metabolismo , Replicación del ADN , ADN de Cadena Simple , Proteínas de la Membrana , Nucleotidiltransferasas/metabolismo , Transducción de Señal/fisiología , Canales Catiónicos TRPV
2.
Mol Cell ; 74(6): 1123-1137.e6, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31053472

RESUMEN

Abnormal processing of stressed replication forks by nucleases can cause fork collapse, genomic instability, and cell death. Despite its importance, it is poorly understood how the cell properly controls nucleases to prevent detrimental fork processing. Here, we report a signaling pathway that controls the activity of exonuclease Exo1 to prevent aberrant fork resection during replication stress. Our results indicate that replication stress elevates intracellular Ca2+ concentration ([Ca2+]i), leading to activation of CaMKK2 and the downstream kinase 5' AMP-activated protein kinase (AMPK). Following activation, AMPK directly phosphorylates Exo1 at serine 746 to promote 14-3-3 binding and inhibit Exo1 recruitment to stressed replication forks, thereby avoiding unscheduled fork resection. Disruption of this signaling pathway results in excessive ssDNA, chromosomal instability, and hypersensitivity to replication stress inducers. These findings reveal a link between [Ca2+]i and the replication stress response as well as a function of the Ca2+-CaMKK2-AMPK signaling axis in safeguarding fork structure to maintain genome stability.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Calcio/metabolismo , Enzimas Reparadoras del ADN/genética , Reparación del ADN , Replicación del ADN , Exodesoxirribonucleasas/genética , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Señalización del Calcio/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Cromatina/química , Cromatina/metabolismo , Daño del ADN , Enzimas Reparadoras del ADN/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Exodesoxirribonucleasas/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones , Osteoblastos/citología , Osteoblastos/metabolismo , Fosforilación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Genes Dev ; 30(8): 946-59, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27083998

RESUMEN

Dynamic regulation of RNF168-mediated ubiquitylation of histone H2A Lys13,15 (H2AK13,15ub) at DNA double-strand breaks (DSBs) is crucial for preventing aberrant DNA repair and maintaining genome stability. However, it remains unclear which deubiquitylating enzyme (DUB) removes H2AK13,15ub. Here we show that USP51, a previously uncharacterized DUB, deubiquitylates H2AK13,15ub and regulates DNA damage response. USP51 depletion results in increased spontaneous DNA damage foci and elevated levels of H2AK15ub and impairs DNA damage response. USP51 overexpression suppresses the formation of ionizing radiation-induced 53BP1 and BRCA1 but not RNF168 foci, suggesting that USP51 functions downstream from RNF168 in DNA damage response. In vitro, USP51 binds to H2A-H2B directly and deubiquitylates H2AK13,15ub. In cells, USP51 is recruited to chromatin after DNA damage and regulates the dynamic assembly/disassembly of 53BP1 and BRCA1 foci. These results show that USP51 is the DUB for H2AK13,15ub and regulates DNA damage response.


Asunto(s)
Daño del ADN/fisiología , Reparación del ADN/fisiología , Histonas/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular/fisiología , ADN/metabolismo , ADN/efectos de la radiación , Humanos , Proteínas Nucleares/metabolismo , Unión Proteica , Radiación Ionizante , Transactivadores/metabolismo , Proteasas Ubiquitina-Específicas/genética , Ubiquitinación
4.
J Biol Chem ; 298(8): 102215, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35779634

RESUMEN

Uncontrolled resection of replication forks under stress can cause genomic instability and influence cancer formation. Extensive fork resection has also been implicated in the chemosensitivity of "BReast CAncer gene" BRCA-deficient cancers. However, how fork resection is controlled in different genetic contexts and how it affects chromosomal stability and cell survival remains incompletely understood. Here, we report a novel function of the transcription repressor ZKSCAN3 in fork protection and chromosomal stability maintenance under replication stress. We show disruption of ZKSCAN3 function causes excessive resection of replication forks by the exonuclease Exo1 and homologous DNA recombination/repair protein Mre11 following fork reversal. Interestingly, in BRCA1-deficient cells, we found ZKSCAN3 actually promotes fork resection upon replication stress. We demonstrate these anti- and pro-resection roles of ZKSCAN3, consisting of a SCAN box, Kruppel-associated box, and zinc finger domain, are mediated by its SCAN box domain and do not require the Kruppel-associated box or zinc finger domains, suggesting that the transcriptional function of ZKSCAN3 is not involved. Furthermore, despite the severe impact on fork structure and chromosomal stability, depletion of ZKSCAN3 did not affect the short-term survival of BRCA1-proficient or BRCA1-deficient cells after treatment with cancer drugs hydroxyurea, PARPi, or cisplatin. Our findings reveal a unique relationship between ZKSCAN3 and BRCA1 in fork protection and add to our understanding of the relationships between replication fork protection, chromosomal instability, and chemosensitivity.


Asunto(s)
Replicación del ADN , Inestabilidad Genómica , Factores de Transcripción/metabolismo , Inestabilidad Cromosómica , Humanos
5.
Nucleic Acids Res ; 45(20): 11766-11781, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-28981724

RESUMEN

Nucleolytic resection of DNA double-strand breaks (DSBs) is essential for both checkpoint activation and homology-mediated repair; however, the precise mechanism of resection, especially the initiation step, remains incompletely understood. Resection of blocked ends with protein or chemical adducts is believed to be initiated by the MRN complex in conjunction with CtIP through internal cleavage of the 5' strand DNA. However, it is not clear whether resection of clean DSBs with free ends is also initiated by the same mechanism. Using the Xenopus nuclear extract system, here we show that the Dna2 nuclease directly initiates the resection of clean DSBs by cleaving the 5' strand DNA ∼10-20 nucleotides away from the ends. In the absence of Dna2, MRN together with CtIP mediate an alternative resection initiation pathway where the nuclease activity of MRN apparently directly cleaves the 5' strand DNA at more distal sites. MRN also facilitates resection initiation by promoting the recruitment of Dna2 and CtIP to the DNA substrate. The ssDNA-binding protein RPA promotes both Dna2- and CtIP-MRN-dependent resection initiation, but a RPA mutant can distinguish between these pathways. Our results strongly suggest that resection of blocked and clean DSBs is initiated via distinct mechanisms.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , Reparación del ADN , ADN/metabolismo , Endonucleasas/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Proteínas Portadoras/metabolismo , ADN/genética , ADN Helicasas/genética , Enzimas Reparadoras del ADN , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Immunoblotting , Proteína Homóloga de MRE11/metabolismo , Mutación , Unión Proteica , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis
6.
J Biol Chem ; 292(37): 15266-15276, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28765281

RESUMEN

Persistent DNA damage induces profound alterations in gene expression that, in turn, influence tissue homeostasis, tumorigenesis, and cancer treatment outcome. However, the underlying mechanism for gene expression reprogramming induced by persistent DNA damage remains poorly understood. Here, using a highly effective bioluminescence-based reporter system and other tools, we report that persistent DNA damage inhibits nonsense-mediated RNA decay (NMD), an RNA surveillance and gene-regulatory pathway, in noncycling cells. NMD suppression by persistent DNA damage required the activity of the p38α MAPK. Activating transcription factor 3 (ATF3), an NMD target and a key stress-inducible transcription factor, was stabilized in a p38α- and NMD-dependent manner following persistent DNA damage. Our results reveal a novel p38α-dependent pathway that regulates NMD activity in response to persistent DNA damage, which, in turn, controls ATF3 expression in affected cells.


Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Daño del ADN , Regulación de la Expresión Génica , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido , ARN Mensajero/metabolismo , Factor de Transcripción Activador 3/química , Factor de Transcripción Activador 3/genética , Biomarcadores/metabolismo , Bleomicina/toxicidad , Células Cultivadas , Senescencia Celular , Activación Enzimática/efectos de los fármacos , Activación Enzimática/efectos de la radiación , Rayos gamma/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Genes Reporteros/efectos de los fármacos , Genes Reporteros/efectos de la radiación , Células HEK293 , Humanos , Mediciones Luminiscentes , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 14 Activada por Mitógenos/genética , Mutágenos/toxicidad , Degradación de ARNm Mediada por Codón sin Sentido/efectos de los fármacos , Degradación de ARNm Mediada por Codón sin Sentido/efectos de la radiación , Estrés Oxidativo , Estabilidad Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de la radiación , Interferencia de ARN , Estabilidad del ARN/efectos de los fármacos , Estabilidad del ARN/efectos de la radiación , ARN Mensajero/química
7.
Nature ; 470(7332): 124-8, 2011 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-21293379

RESUMEN

p53-binding protein 1 (53BP1) is known to be an important mediator of the DNA damage response, with dimethylation of histone H4 lysine 20 (H4K20me2) critical to the recruitment of 53BP1 to double-strand breaks (DSBs). However, it is not clear how 53BP1 is specifically targeted to the sites of DNA damage, as the overall level of H4K20me2 does not seem to increase following DNA damage. It has been proposed that DNA breaks may cause exposure of methylated H4K20 previously buried within the chromosome; however, experimental evidence for such a model is lacking. Here we found that H4K20 methylation actually increases locally upon the induction of DSBs and that methylation of H4K20 at DSBs is mediated by the histone methyltransferase MMSET (also known as NSD2 or WHSC1) in mammals. Downregulation of MMSET significantly decreases H4K20 methylation at DSBs and the subsequent accumulation of 53BP1. Furthermore, we found that the recruitment of MMSET to DSBs requires the γH2AX-MDC1 pathway; specifically, the interaction between the MDC1 BRCT domain and phosphorylated Ser 102 of MMSET. Thus, we propose that a pathway involving γH2AX-MDC1-MMSET regulates the induction of H4K20 methylation on histones around DSBs, which, in turn, facilitates 53BP1 recruitment.


Asunto(s)
Roturas del ADN de Doble Cadena , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisina/metabolismo , Proteínas Represoras/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Células HeLa , N-Metiltransferasa de Histona-Lisina/química , Humanos , Metilación , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilación , Fosfoserina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Proteínas Represoras/química , Transactivadores/química , Transactivadores/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53
8.
Mol Cell ; 35(4): 442-53, 2009 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-19716789

RESUMEN

ATR and Chk1 are two key protein kinases in the replication checkpoint. Activation of ATR-Chk1 has been extensively investigated, but checkpoint termination and replication fork restart are less well understood. Here, we report that DNA damage not only activates Chk1, but also exposes a degron-like region at the carboxyl terminus of Chk1 to an Fbx6-containing SCF (Skp1-Cul1-F box) E3 ligase, which mediates the ubiquitination and degradation of Chk1 and, in turn, terminates the checkpoint. The protein levels of Chk1 and Fbx6 showed an inverse correlation in both cultured cancer cells and in human breast tumor tissues. Further, we show that low levels of Fbx6 and consequent impairment of replication stress-induced Chk1 degradation are associated with cancer cell resistance to the chemotherapeutic agent, camptothecin. We propose that Fbx6-dependent Chk1 degradation contributes to S phase checkpoint termination and that a defect in this mechanism might increase tumor cell resistance to certain anticancer drugs.


Asunto(s)
Daño del ADN , Replicación del ADN , Neoplasias/enzimología , Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Ligasas SKP Cullina F-box/metabolismo , Estrés Fisiológico , Antineoplásicos Fitogénicos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada , Camptotecina/farmacología , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos , Activación Enzimática , Humanos , Lisina , Neoplasias/genética , Neoplasias/patología , Fosforilación , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Interferencia de ARN , Proteínas Ligasas SKP Cullina F-box/genética , Factores de Tiempo , Ubiquitinación
9.
Mol Cell ; 36(6): 954-69, 2009 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-20064462

RESUMEN

In response to DNA double-strand breaks (DSBs), cells sense the DNA lesions and then activate the protein kinase ATM. Subsequent DSB resection produces RPA-coated ssDNA that is essential for activation of the DNA damage checkpoint and DNA repair by homologous recombination (HR). However, the biochemical mechanism underlying the transition from DSB sensing to resection remains unclear. Using Xenopus egg extracts and human cells, we show that the tumor suppressor protein CtIP plays a critical role in this transition. We find that CtIP translocates to DSBs, a process dependent on the DSB sensor complex Mre11-Rad50-NBS1, the kinase activity of ATM, and a direct DNA-binding motif in CtIP, and then promotes DSB resection. Thus, CtIP facilitates the transition from DSB sensing to processing: it does so by binding to the DNA at DSBs after DSB sensing and ATM activation and then promoting DNA resection, leading to checkpoint activation and HR.


Asunto(s)
Proteínas Portadoras/metabolismo , Roturas del ADN de Doble Cadena , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas , Activación Enzimática , Humanos , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Oocitos/citología , Oocitos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Recombinación Genética , Alineación de Secuencia , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Xenopus laevis
10.
J Biol Chem ; 290(19): 12300-12, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25833945

RESUMEN

The DNA end resection process dictates the cellular response to DNA double strand break damage and is essential for genome maintenance. Although insufficient DNA resection hinders homology-directed repair and ATR (ataxia telangiectasia and Rad3 related)-dependent checkpoint activation, overresection produces excessive single-stranded DNA that could lead to genomic instability. However, the mechanisms controlling DNA end resection are poorly understood. Here we show that the major resection nuclease Exo1 is regulated both positively and negatively by protein-protein interactions to ensure a proper level of DNA resection. We have shown previously that the sliding DNA clamp proliferating cell nuclear antigen (PCNA) associates with the C-terminal domain of Exo1 and promotes Exo1 damage association and DNA resection. In this report, we show that 14-3-3 proteins interact with a central region of Exo1 and negatively regulate Exo1 damage recruitment and subsequent resection. 14-3-3s limit Exo1 damage association, at least in part, by suppressing its association with PCNA. Disruption of the Exo1 interaction with 14-3-3 proteins results in elevated sensitivity of cells to DNA damage. Unlike Exo1, the Dna2 resection pathway is apparently not regulated by PCNA and 14-3-3s. Our results provide critical insights into the mechanism and regulation of the DNA end resection process and may have implications for cancer treatment.


Asunto(s)
Proteínas 14-3-3/metabolismo , Roturas del ADN de Doble Cadena , Exodesoxirribonucleasas/metabolismo , Regulación de la Expresión Génica , Antígeno Nuclear de Célula en Proliferación/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Supervivencia Celular , ADN/genética , Reparación del ADN , Glutatión Transferasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Microscopía Fluorescente , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Xenopus
11.
Acta Biochim Biophys Sin (Shanghai) ; 48(7): 647-57, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27174871

RESUMEN

DNA end resection is a key process in the cellular response to DNA double-strand break damage that is essential for genome maintenance and cell survival. Resection involves selective processing of 5' ends of broken DNA to generate ssDNA overhangs, which in turn control both DNA repair and checkpoint signaling. DNA resection is the first step in homologous recombination-mediated repair and a prerequisite for the activation of the ataxia telangiectasia mutated and Rad3-related (ATR)-dependent checkpoint that coordinates repair with cell cycle progression and other cellular processes. Resection occurs in a cell cycle-dependent manner and is regulated by multiple factors to ensure an optimal amount of ssDNA required for proper repair and genome stability. Here, we review the latest findings on the molecular mechanisms and regulation of the DNA end resection process and their implications for cancer formation and treatment.


Asunto(s)
Reparación del ADN , ADN de Cadena Simple/química , Roturas del ADN de Doble Cadena , Replicación del ADN , Heterocromatina/metabolismo , Telómero
12.
Nucleic Acids Res ; 41(20): 9325-38, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23939618

RESUMEN

Exo1-mediated resection of DNA double-strand break ends generates 3' single-stranded DNA overhangs required for homology-based DNA repair and activation of the ATR-dependent checkpoint. Despite its critical importance in inducing the overall DNA damage response, the mechanisms and regulation of the Exo1 resection pathway remain incompletely understood. Here, we identify the ring-shaped DNA clamp PCNA as a new factor in the Exo1 resection pathway. Using mammalian cells, Xenopus nuclear extracts and purified proteins, we show that after DNA damage, PCNA loads onto double-strand breaks and promotes Exo1 damage association through direct interaction with Exo1. By tethering Exo1 to the DNA substrate, PCNA confers processivity to Exo1 in resection. This role of PCNA in DNA resection is analogous to its function in DNA replication where PCNA serves as a processivity co-factor for DNA polymerases.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Animales , Línea Celular , Exodesoxirribonucleasas/química , Humanos , Xenopus
13.
Nucleic Acids Res ; 41(3): 1698-710, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23268447

RESUMEN

Protein ubiquitination plays an important role in activating the DNA damage response and maintaining genomic stability. In response to DNA double-strand breaks (DSBs), a ubiquitination cascade occurs at DNA lesions. Here, we show that checkpoint with Forkhead-associated (FHA) and RING finger domain protein (CHFR), an E3 ubiquitin ligase, is recruited to DSBs by poly(ADP-ribose) (PAR). At DSBs, CHFR regulates the first wave of protein ubiquitination. Moreover, CHFR ubiquitinates PAR polymerase 1 (PARP1) and regulates chromatin-associated PARP1 in vivo. Thus, these results demonstrate that CHFR is an important E3 ligase in the early stage of the DNA damage response, which mediates the crosstalk between ubiquitination and poly-ADP-ribosylation.


Asunto(s)
Daño del ADN , Proteínas Supresoras de Tumor/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Ubiquitinación , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Células Cultivadas , Reparación del ADN , Humanos , Rayos Láser , Ratones , Proteínas de Neoplasias/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa
14.
Nat Cell Biol ; 9(11): 1311-8, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17952060

RESUMEN

The tumour-suppressor gene ATM, mutations in which cause the human genetic disease ataxia telangiectasia (A-T), encodes a key protein kinase that controls the cellular response to DNA double-strand breaks (DSBs). DNA DSBs caused by ionizing radiation or chemicals result in rapid ATM autophosphorylation, leading to checkpoint activation and phosphorylation of substrates that regulate cell-cycle progression, DNA repair, transcription and cell death. However, the precise mechanism by which damaged DNA induces ATM and checkpoint activation remains unclear. Here, we demonstrate that linear DNA fragments added to Xenopus egg extracts mimic DSBs in genomic DNA and provide a platform for ATM autophosphorylation and activation. ATM autophosphorylation and phosphorylation of its substrate NBS1 are dependent on DNA fragment length and the concentration of DNA ends. The minimal DNA length required for efficient ATM autophosphorylation is approximately 200 base pairs, with cooperative autophosphorylation induced by DNA fragments of at least 400 base pairs. Importantly, full ATM activation requires it to bind to DNA regions flanking DSB ends. These findings reveal a direct role for DNA flanking DSB ends in ATM activation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , ADN , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/efectos de los fármacos , Extractos Celulares/química , ADN/farmacología , ADN/fisiología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Inhibidores Enzimáticos/farmacología , Humanos , Morfolinas/farmacología , Óvulo/química , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Pironas/farmacología , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/efectos de los fármacos , Regulación hacia Arriba , Xenopus
15.
Cell Death Dis ; 15(1): 45, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218875

RESUMEN

Interferon-induced transmembrane protein 3 (IFITM3) has been previously verified to be an endosomal protein that prevents viral infection. Recent findings suggested IFITM3 as a key factor in tumor invasion and progression. To clarify the role and molecular mechanism of IFITM3 in Glioblastoma multiforme (GBM) progression, we investigated the expression of IFITM3 in glioma datasets culled from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA). Primary GBM stem cells (GSCs) were cultured and identified in vitro. Loss-of-function and gain-of-function experiments were established by using shRNAs and lentiviral vectors targeting IFITM3. Co-culture system of GSCs and vascular endothelial cells was constructed in a Transwell chamber. Tube formation and spheroid-based angiogenesis assays were performed to determine the angiogenic capacity of endothelial cells. Results revealed that IFITM3 is elevated in GBM samples and predictive of adverse outcome. Mechanistically, GSCs-derived IFITM3 causes activation of Jak2/STAT3 signaling and leads to robust secretion of bFGF into tumor environment, which eventually results in enhanced angiogenesis. Taken together, these evidence indicated IFITM3 as an essential factor in GBM angiogenesis. Our findings provide a new insight into mechanism by which IFITM3 modulates GBM angiogenesis.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patología , Células Endoteliales/metabolismo , Angiogénesis , Glioma/genética , Transducción de Señal , Células Madre/metabolismo , Neoplasias Encefálicas/patología , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
16.
Cell Death Dis ; 15(5): 318, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710703

RESUMEN

Glioblastoma stem cells (GSCs) play a key role in glioblastoma (GBM) resistance to temozolomide (TMZ) chemotherapy. With the increase in research on the tumour microenvironment, exosomes secreted by GSCs have become a new focus in GBM research. However, the molecular mechanism by which GSCs affect drug resistance in GBM cells via exosomes remains unclear. Using bioinformatics analysis, we identified the specific expression of ABCB4 in GSCs. Subsequently, we established GSC cell lines and used ultracentrifugation to extract secreted exosomes. We conducted in vitro and in vivo investigations to validate the promoting effect of ABCB4 and ABCB4-containing exosomes on TMZ resistance. Finally, to identify the transcription factors regulating the transcription of ABCB4, we performed luciferase assays and chromatin immunoprecipitation-quantitative PCR. Our results indicated that ABCB4 is highly expressed in GSCs. Moreover, high expression of ABCB4 promoted the resistance of GSCs to TMZ. Our study found that GSCs can also transmit their highly expressed ABCB4 to differentiated glioma cells (DGCs) through exosomes, leading to high expression of ABCB4 in these cells and promoting their resistance to TMZ. Mechanistic studies have shown that the overexpression of ABCB4 in GSCs is mediated by the transcription factor ATF3. In conclusion, our results indicate that GSCs can confer resistance to TMZ in GBM by transmitting ABCB4, which is transcribed by ATF3, through exosomes. This mechanism may lead to drug resistance and recurrence of GBM. These findings contribute to a deeper understanding of the mechanisms underlying drug resistance in GBM and provide novel insights into its treatment.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Factor de Transcripción Activador 3 , Neoplasias Encefálicas , Resistencia a Antineoplásicos , Exosomas , Glioblastoma , Células Madre Neoplásicas , Temozolomida , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Exosomas/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Factor de Transcripción Activador 3/metabolismo , Factor de Transcripción Activador 3/genética , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Animales , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Desnudos
17.
Nat Commun ; 15(1): 4609, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816425

RESUMEN

The protection of the replication fork structure under stress conditions is essential for genome maintenance and cancer prevention. A key signaling pathway for fork protection involves TRPV2-mediated Ca2+ release from the ER, which is triggered after the generation of cytosolic DNA and the activation of cGAS/STING. This results in CaMKK2/AMPK activation and subsequent Exo1 phosphorylation, which prevent aberrant fork processing, thereby ensuring genome stability. However, it remains poorly understood how the TRPV2 channel is activated by the presence of cytosolic DNA. Here, through a genome-wide CRISPR-based screen, we identify TRPM8 channel-associated factor 1 (TCAF1) as a key factor promoting TRPV2-mediated Ca2+ release under replication stress or other conditions that activate cGAS/STING. Mechanistically, TCAF1 assists Ca2+ release by facilitating the dissociation of STING from TRPV2, thereby relieving TRPV2 repression. Consistent with this function, TCAF1 is required for fork protection, chromosomal stability, and cell survival after replication stress.


Asunto(s)
Calcio , Citosol , Replicación del ADN , Proteínas de la Membrana , Canales Catiónicos TRPV , Humanos , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Calcio/metabolismo , Citosol/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Células HEK293 , ADN/metabolismo , Células HeLa , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Fosforilación , Inestabilidad Genómica , Daño del ADN , Animales
18.
DNA Repair (Amst) ; 129: 103531, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37453246

RESUMEN

DNA replication stress (RS) is frequently induced by oncogene activation and is believed to promote tumorigenesis. However, clinical evidence for the role of oncogene-induced RS in tumorigenesis remains scarce, and the mechanisms by which RS promotes cancer development remain incompletely understood. By performing a series of bioinformatic analyses on the oncogene E2F1, other RS-inducing factors, and replication fork processing factors in TCGA cancer database using previously established tools, we show that hyperactivity of E2F1 likely promotes the expression of several of these factors in virtually all types of cancer to induce RS and cytosolic self-DNA production. In addition, the expression of these factors positively correlates with that of ATR and Chk1 that govern the cellular response to RS, the tumor mutational load, and tumor infiltration of immune-suppressive CD4+Th2 cells and myeloid-derived suppressor cells (MDSCs). Consistently, high expression of these factors is associated with poor patient survival. Our study provides new insights into the role of E2F1-induced RS in tumorigenesis and suggests therapeutic approaches for E2F1-overexpressing cancers by targeting genomic instability, cytosolic self-DNA and the tumor immune microenvironment.


Asunto(s)
Replicación del ADN , Neoplasias , Humanos , Neoplasias/genética , Mutación , Biomarcadores de Tumor , ADN , Carcinogénesis , Microambiente Tumoral , Factor de Transcripción E2F1/genética
19.
bioRxiv ; 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-36865136

RESUMEN

Checkpoint activation after DNA damage causes a transient cell cycle arrest by suppressing CDKs. However, it remains largely elusive how cell cycle recovery is initiated after DNA damage. In this study, we discovered the upregulated protein level of MASTL kinase hours after DNA damage. MASTL promotes cell cycle progression by preventing PP2A/B55-catalyzed dephosphorylation of CDK substrates. DNA damage-induced MASTL upregulation was caused by decreased protein degradation, and was unique among mitotic kinases. We identified E6AP as the E3 ubiquitin ligase that mediated MASTL degradation. MASTL degradation was inhibited upon DNA damage as a result of the dissociation of E6AP from MASTL. E6AP depletion reduced DNA damage signaling, and promoted cell cycle recovery from the DNA damage checkpoint, in a MASTL-dependent manner. Furthermore, we found that E6AP was phosphorylated at Ser-218 by ATM after DNA damage and that this phosphorylation was required for its dissociation from MASTL, the stabilization of MASTL, and the timely recovery of cell cycle progression. Together, our data revealed that ATM/ATR-dependent signaling, while activating the DNA damage checkpoint, also initiates cell cycle recovery from the arrest. Consequently, this results in a timer-like mechanism that ensures the transient nature of the DNA damage checkpoint.

20.
Elife ; 122023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37672026

RESUMEN

Checkpoint activation after DNA damage causes a transient cell cycle arrest by suppressing cyclin-dependent kinases (CDKs). However, it remains largely elusive how cell cycle recovery is initiated after DNA damage. In this study, we discovered the upregulated protein level of MASTL kinase hours after DNA damage. MASTL promotes cell cycle progression by preventing PP2A/B55-catalyzed dephosphorylation of CDK substrates. DNA damage-induced MASTL upregulation was caused by decreased protein degradation, and was unique among mitotic kinases. We identified E6AP as the E3 ubiquitin ligase that mediated MASTL degradation. MASTL degradation was inhibited upon DNA damage as a result of the dissociation of E6AP from MASTL. E6AP depletion reduced DNA damage signaling, and promoted cell cycle recovery from the DNA damage checkpoint, in a MASTL-dependent manner. Furthermore, we found that E6AP was phosphorylated at Ser-218 by ATM after DNA damage and that this phosphorylation was required for its dissociation from MASTL, the stabilization of MASTL, and the timely recovery of cell cycle progression. Together, our data revealed that ATM/ATR-dependent signaling, while activating the DNA damage checkpoint, also initiates cell cycle recovery from the arrest. Consequently, this results in a timer-like mechanism that ensures the transient nature of the DNA damage checkpoint.


Asunto(s)
Quinasas Ciclina-Dependientes , Daño del ADN , Puntos de Control del Ciclo Celular , Ciclo Celular , División Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA