Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Water Sci Technol ; 80(6): 1196-1204, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31799963

RESUMEN

Anaerobic digestion effluent (ADE) from the anaerobic digestion treatment of citric acid wastewater can be reused as a potential substitute for process water in the citric acid fermentation. However, excessive sodium contained in ADE significantly decreases citric acid production. In this paper, the inhibition mechanism of sodium on citric acid fermentation was investigated. We demonstrated that excessive sodium did not increase oxidative stress for Aspergillus niger, but reduced the pH of the medium significantly over the period 4-24 h, which led to lower activities of glucoamylase and isomaltase secreted by A. niger, with a decrease of available sugar concentration and citric acid production. ADE was pretreated by air-stripping prior to recycle and 18 g/L calcium carbonate was added at the start of fermentation to control the pH of the medium. The inhibition caused by ADE was completely alleviated and citric acid production substantially increased from 118.6 g/L to 141.4 g/L, comparable to the fermentation with deionized water (141.2 g/L). This novel process could decrease wastewater discharges and fresh water consumption in the citric acid industry, with benefit to the environment.


Asunto(s)
Ácido Cítrico , Aguas Residuales , Aire , Anaerobiosis , Fermentación , Concentración de Iones de Hidrógeno
2.
Bioresour Technol ; 413: 131523, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39343178

RESUMEN

The performance and stability of a bioelectrochemical anaerobic digester (BeAD), continuously augmented with electroactive microorganisms (EAMs), were investigated. The BeAD showcased superior performance, sustaining the high COD removal efficiency and methane production rate of 76.5 % and 0.67 L/(L.d), respectively, in a stable state. Prominently, it exhibited remarkable resilience under hydraulic and organic shock loads, adeptly recuperating from disturbances up to 1000 % of its stable condition. This resilience of up to 300 % shock load was driven by increased levels of electron transport components such as quinones and riboflavins, which act as electron shuttles. However, after extreme shock exposures from 500 % to 1000 %, despite the spike in inhibitory by-products such as humic acids and ammonia, the upregulation of the mtr complex was pivotal in recovering and sustaining methane production. These insights emphasize the BeAD's capability to bolster both performance and stability, thereby providing a potent strategy for practical application of bioelectrochemical systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA