Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Biol ; 19(1): 247, 2021 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-34801008

RESUMEN

BACKGROUND: The main function of telomerase is at the telomeres but under adverse conditions telomerase can bind to internal regions causing deleterious effects as observed in cancer cells. RESULTS: By mapping the global occupancy of the catalytic subunit of telomerase (Est2) in the budding yeast Saccharomyces cerevisiae, we reveal that it binds to multiple guanine-rich genomic loci, which we termed "non-telomeric binding sites" (NTBS). We characterize Est2 binding to NTBS. Contrary to telomeres, Est2 binds to NTBS in G1 and G2 phase independently of Est1 and Est3. The absence of Est1 and Est3 renders telomerase inactive at NTBS. However, upon global DNA damage, Est1 and Est3 join Est2 at NTBS and telomere addition can be observed indicating that Est2 occupancy marks NTBS regions as particular risks for genome stability. CONCLUSIONS: Our results provide a novel model of telomerase regulation in the cell cycle using internal regions as "parking spots" of Est2 but marking them as hotspots for telomere addition.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Telomerasa , Daño del ADN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética
2.
FASEB J ; 34(9): 12646-12662, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32748509

RESUMEN

The integrity of the genetic material is crucial for every organism. One intrinsic attack to genome stability is stalling of the replication fork which can result in DNA breakage. Several factors, such as DNA lesions or the formation of stable secondary structures (eg, G-quadruplexes) can lead to replication fork stalling. G-quadruplexes (G4s) are well-characterized stable secondary DNA structures that can form within specific single-stranded DNA sequence motifs and have been shown to block/pause the replication machinery. In most genomes several helicases have been described to regulate G4 unfolding to preserve genome integrity, however, different experiments raise the hypothesis that processing of G4s during DNA replication is more complex and requires additional, so far unknown, proteins. Here, we show that the Saccharomyces cerevisiae Mgs1 protein robustly binds to G4 structures in vitro and preferentially acts at regions with a strong potential to form G4 structures in vivo. Our results suggest that Mgs1 binds to G4-forming sites and has a role in the maintenance of genome integrity.


Asunto(s)
ADN Helicasas/fisiología , Proteínas de Unión al ADN/fisiología , G-Cuádruplex , Inestabilidad Genómica , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , ADN de Hongos/química , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA