Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38397073

RESUMEN

Cancer cells frequently present elevated intracellular iron levels, which are thought to facilitate an enhanced proliferative capacity. Targeting iron metabolism within cancer cells presents an avenue to enhance therapeutic responses, necessitating the use of non-invasive models to modulate iron manipulation to predict responses. Moreover, the ubiquitous nature of iron necessitates the development of unique, non-invasive markers of metabolic disruptions to develop more personalized approaches and enhance the clinical utility of these approaches. Ferritin, an iron storage enzyme that is often upregulated as a response to iron accumulation, plays a central role in iron metabolism and has been frequently associated with unfavorable clinical outcomes in cancer. Herein, we demonstrate the successful utility, validation, and functionality of a doxycycline-inducible ferritin heavy chain (FtH) overexpression model in H1299T non-small-cell lung cancer (NSCLC) cells. Treatment with doxycycline increased the protein expression of FtH with a corresponding decrease in labile iron in vitro and in vivo, as determined by calcein-AM staining and EPR, respectively. Moreover, a subsequent increase in TfR expression was observed. Furthermore, T2* MR mapping effectively detected FtH expression in our in vivo model. These results demonstrate that T2* relaxation times can be used to monitor changes in FtH expression in tumors with bidirectional correlations depending on the model system. Overall, this study describes the development of an FtH overexpression NSCLC model and its correlation with T2* mapping for potential use in patients to interrogate iron metabolic alterations and predict clinical outcomes.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Ferritinas/genética , Ferritinas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/genética , Doxiciclina/farmacología , Neoplasias Pulmonares/diagnóstico por imagen , Hierro/metabolismo , Apoferritinas/genética , Apoferritinas/metabolismo , Imagen por Resonancia Magnética/métodos
2.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38138986

RESUMEN

Glioblastoma (GBM), a highly lethal and aggressive central nervous system malignancy, presents a critical need for targeted therapeutic approaches to improve patient outcomes in conjunction with standard-of-care (SOC) treatment. Molecular subtyping based on genetic profiles and metabolic characteristics has advanced our understanding of GBM to better predict its evolution, mechanisms, and treatment regimens. Pharmacological ascorbate (P-AscH-) has emerged as a promising supplementary cancer therapy, leveraging its pro-oxidant properties to selectively kill malignant cells when combined with SOC. Given the clinical challenges posed by the heterogeneity and resistance of various GBM subtypes to conventional SOC, our study assessed the response of classical, mesenchymal, and proneural GBM to P-AscH-. P-AscH- (20 pmol/cell) combined with SOC (5 µM temozolomide and 4 Gy of radiation) enhanced clonogenic cell killing in classical and mesenchymal GBM subtypes, with limited effects in the proneural subtype. Similarly, following exposure to P-AscH- (20 pmol/cell), single-strand DNA damage significantly increased in classical and mesenchymal but not proneural GBM. Moreover, proneural GBM exhibited increased hydrogen peroxide removal rates, along with increased catalase and glutathione peroxidase activities compared to mesenchymal and classical GBM, demonstrating an altered H2O2 metabolism that potentially drives differential P-AscH- toxicity. Taken together, these data suggest that P-AscH- may hold promise as an approach to improve SOC responsiveness in mesenchymal GBMs that are known for their resistance to SOC.


Asunto(s)
Antineoplásicos , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Peróxido de Hidrógeno/metabolismo , Ácido Ascórbico/farmacología , Antioxidantes , Quimioradioterapia
3.
Bioengineering (Basel) ; 11(2)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38391668

RESUMEN

BACKGROUND: Radiation therapy (RT) is an integral and commonly used therapeutic modality for primary lung cancer. However, radiation-induced lung injury (RILI) limits the irradiation dose used in the lung and is a significant source of morbidity. Disruptions in iron metabolism have been linked to radiation injury, but the underlying mechanisms remain unclear. PURPOSE: To utilize a targeted radiation delivery approach to induce RILI for the development of a model system to study the role of radiation-induced iron accumulation in RILI. METHODS: This study utilizes a Small Animal Radiation Research Platform (SARRP) to target the right lung with a 20 Gy dose while minimizing the dose delivered to the left lung and adjacent heart. Long-term pulmonary function was performed using RespiRate-x64image analysis. Normal-appearing lung volumes were calculated using a cone beam CT (CBCT) image thresholding approach in 3D Slicer software. Quantification of iron accumulation was performed spectrophotometrically using a ferrozine-based assay as well as histologically using Prussian blue and via Western blotting for ferritin heavy chain expression. RESULTS: Mild fibrosis was seen histologically in the irradiated lung using hematoxylin and eosin-stained fixed tissue at 9 months, as well as using a scoring system from CBCT images, the Szapiel scoring system, and the highest fibrotic area metric. In contrast, no changes in breathing rate were observed, and median survival was not achieved up to 36 weeks following irradiation, consistent with mild lung fibrosis when only one lung was targeted. Our study provided preliminary evidence on increased iron content and ferritin heavy chain expression in the irradiated lung, thus warranting further investigation. CONCLUSIONS: A targeted lung irradiation model may be a useful approach for studying the long-term pathological effects associated with iron accumulation and RILI following ionizing radiation.

4.
Antioxidants (Basel) ; 13(5)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38790692

RESUMEN

Soft tissue sarcomas (STSs) are mesenchymal malignant lesions that develop in soft tissues. Despite current treatments, including radiation therapy (RT) and surgery, STSs can be associated with poor patient outcomes and metastatic recurrences. Neoadjuvant radiation therapy (nRT), while effective, is often accompanied by severe postoperative wound healing complications due to damage to the surrounding normal tissues. Thus, there is a need to develop therapeutic approaches to reduce nRT toxicities. Avasopasem manganese (AVA) is a selective superoxide dismutase mimetic that protects against IR-induced oral mucositis and lung fibrosis. We tested the efficacy of AVA in enhancing RT in STSs and in promoting wound healing. Using colony formation assays and alkaline comet assays, we report that AVA selectively enhanced the STS (liposarcoma, fibrosarcoma, leiomyosarcoma, and MPNST) cellular response to radiation compared to normal dermal fibroblasts (NDFs). AVA is believed to selectively enhance radiation therapy by targeting differential hydrogen peroxide clearance in tumor cells compared to non-malignant cells. STS cells demonstrated increased catalase protein levels and activity compared to normal fibroblasts. Additionally, NDFs showed significantly higher levels of GPx1 activity compared to STSs. The depletion of glutathione using buthionine sulfoximine (BSO) sensitized the NDF cells to AVA, suggesting that GPx1 may, in part, facilitate the selective toxicity of AVA. Finally, AVA significantly accelerated wound closure in a murine model of wound healing post RT. Our data suggest that AVA may be a promising combination strategy for nRT therapy in STSs.

5.
Clin Cancer Res ; 30(2): 283-293, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37773633

RESUMEN

PURPOSE: Pharmacologic ascorbate (P-AscH-) is hypothesized to be an iron (Fe)-dependent tumor-specific adjuvant to chemoradiation in treating glioblastoma (GBM). This study determined the efficacy of combining P-AscH- with radiation and temozolomide in a phase II clinical trial while simultaneously investigating a mechanism-based, noninvasive biomarker in T2* mapping to predict GBM response to P-AscH- in humans. PATIENTS AND METHODS: The single-arm phase II clinical trial (NCT02344355) enrolled 55 subjects, with analysis performed 12 months following the completion of treatment. Overall survival (OS) and progression-free survival (PFS) were estimated with the Kaplan-Meier method and compared across patient subgroups with log-rank tests. Forty-nine of 55 subjects were evaluated using T2*-based MRI to assess its utility as an Fe-dependent biomarker. RESULTS: Median OS was estimated to be 19.6 months [90% confidence interval (CI), 15.7-26.5 months], a statistically significant increase compared with historic control patients (14.6 months). Subjects with initial T2* relaxation < 50 ms were associated with a significant increase in PFS compared with T2*-high subjects (11.2 months vs. 5.7 months, P < 0.05) and a trend toward increased OS (26.5 months vs. 17.5 months). These results were validated in preclinical in vitro and in vivo model systems. CONCLUSIONS: P-AscH- combined with temozolomide and radiotherapy has the potential to significantly enhance GBM survival. T2*-based MRI assessment of tumor iron content is a prognostic biomarker for GBM clinical outcomes. See related commentary by Nabavizadeh and Bagley, p. 255.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Humanos , Antineoplásicos/uso terapéutico , Antineoplásicos Alquilantes/uso terapéutico , Biomarcadores , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/diagnóstico por imagen , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Imagen por Resonancia Magnética , Temozolomida/uso terapéutico
6.
Front Immunol ; 13: 989000, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072595

RESUMEN

Pharmacological ascorbate (i.e., intravenous infusions of vitamin C reaching ~ 20 mM in plasma) is under active investigation as an adjuvant to standard of care anti-cancer treatments due to its dual redox roles as an antioxidant in normal tissues and as a prooxidant in malignant tissues. Immune checkpoint inhibitors (ICIs) are highly promising therapies for many cancer patients but face several challenges including low response rates, primary or acquired resistance, and toxicity. Ascorbate modulates both innate and adaptive immune functions and plays a key role in maintaining the balance between pro and anti-inflammatory states. Furthermore, the success of pharmacological ascorbate as a radiosensitizer and a chemosensitizer in pre-clinical studies and early phase clinical trials suggests that it may also enhance the efficacy and expand the benefits of ICIs.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapéutico , Ácido Ascórbico/farmacología , Ácido Ascórbico/uso terapéutico , Humanos , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Neoplasias/tratamiento farmacológico
7.
Antioxidants (Basel) ; 10(9)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34572961

RESUMEN

Cisplatin is a chemotherapy agent commonly used to treat a wide variety of cancers. Despite the potential for both severe acute and chronic side effects, it remains a preferred therapeutic option for many malignancies due to its potent anti-tumor activity. Common cisplatin-associated side-effects include acute kidney injury (AKI) and chronic kidney disease (CKD). These renal injuries may cause delays and potentially cessation of cisplatin therapy and have long-term effects on renal function reserve. Thus, developing mechanism-based interventional strategies that minimize cisplatin-associated kidney injury without reducing efficacy would be of great benefit. In addition to its action of cross-linking DNA, cisplatin has been shown to affect mitochondrial metabolism, resulting in mitochondrially derived reactive oxygen species (ROS). Increased ROS formation in renal proximal convoluted tubule cells is associated with cisplatin-induced AKI and CKD. We review the mechanisms by which cisplatin may induce AKI and CKD and discuss the potential of mitochondrial superoxide dismutase mimetics to prevent platinum-associated nephrotoxicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA