Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Chem Phys ; 159(22)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38084811

RESUMEN

A practical ab initio composite method for modeling x-ray absorption and non-resonant x-ray emission is presented. Vertical K-edge excitation and emission energies are obtained from core-electron binding energies calculated with spin-projected ΔHF/ΔMP and outer-core ionization potentials/electron affinities calculated with electron propagator theory. An assessment of the combined methodologies against experiment is performed for a set of small molecules containing second-row elements.

2.
J Chem Phys ; 157(8): 084115, 2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36050021

RESUMEN

Vertical core excitation energies are obtained using a combination of the ΔSCF method and the diagonal second-order self-energy approximation. These methods are applied to a set of neutral molecules and their anionic forms. An assessment of the results with the inclusion of relativistic effects is presented. For core excitations involving delocalized symmetry orbitals, the applied composite method improves upon the overestimation of ΔSCF by providing approximate values close to experimental K-shell transition energies. The importance of both correlation and relaxation contributions to the vertical core-excited state energies, the concept of local and nonlocal core orbitals, and the consequences of breaking symmetry are discussed.

4.
Front Chem ; 11: 1154526, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37388945

RESUMEN

This study examines the computational challenges in elucidating intricate chemical systems, particularly through ab-initio methodologies. This work highlights the Divide-Expand-Consolidate (DEC) approach for coupled cluster (CC) theory-a linear-scaling, massively parallel framework-as a viable solution. Detailed scrutiny of the DEC framework reveals its extensive applicability for large chemical systems, yet it also acknowledges inherent limitations. To mitigate these constraints, the cluster perturbation theory is presented as an effective remedy. Attention is then directed towards the CPS (D-3) model, explicitly derived from a CC singles parent and a doubles auxiliary excitation space, for computing excitation energies. The reviewed new algorithms for the CPS (D-3) method efficiently capitalize on multiple nodes and graphical processing units, expediting heavy tensor contractions. As a result, CPS (D-3) emerges as a scalable, rapid, and precise solution for computing molecular properties in large molecular systems, marking it an efficient contender to conventional CC models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA